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Executive Summary 

At the beginning of 2013 the I-95 Corridor Coalition directed the Vehicle Probe Project (VPP) 
validation team to shift focus from freeways to signal controlled arterials, and to develop a 
comprehensive analysis of probe data quality on arterial roadways.  In response, the VPP 
validation team collected traffic data and compared it to VPP reported data on a variety of 
arterial roadways within participating states from April 2013 through June of 2014.  During this 
period nine data collection activities were carried out on 14 corridors within the states of New 
Jersey, Pennsylvania, Maryland, Virginia, and North Carolina covering 320 miles, and spanned 
roadway functional classes of Other Principal Arterials, Minor Arterials, and Major Collectors, 
based on Highway Performance Monitoring System1 (HPMS) classifications.   On all of these 
facilities outsourced probe data provided through the VPP was compared with field-collected 
Bluetooth Traffic Monitoring (BTM) data which provided a reference source for travel time on 
each segment.  The comparison of the two data sources was conducted using four analysis 
methods which included: 
 

(1) A traditional analysis using precision and bias metrics which compared the speed 
reported by the probe data with the speed reported by BTM reference data in five minute 
intervals.  The traditional analysis was derived from the freeway validation method that 
has been used since 2008.   

(2) A slowdown analysis rated how accurately probe data capture significant disruptions 
defined as reductions of traffic speed by at least 10 to 15 miles per hour for 30 minutes or 
longer.  Three ratings were used for each slowdown: fully captured, partially captured, 
and failed to capture.   

(3) A sampled distribution method assessed probe data’s ability to accurately portray 
recurring congestion.  Weekday overlay plots combined with percentiles-based 
cumulative frequency diagrams (CFDs) provided visual feedback on the fidelity of probe 
data.   

(4) Lastly, the probe and BTM data from each day of data collection on each segment were 
thoroughly reviewed by a team of researchers.  This provided first-hand review of the 
fidelity of arterial probe data in comparison to BTM, and it provided the research team a 
perspective to judge the effectiveness of the various analysis methods.  

 
This extensive validation effort resulted in recommendations on the use of outsourced probe data 
for operations and performance measure purposes, considerations for future use, and future 
validation emphasis for probe data on arterial roadways.  The initial top level recommendations 
for accuracy and use of existing VPP data for arterial roadways is summarized in Table ES-1  
 

                                                 
1 Highway Performance Monitoring System 
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Table ES-1. Arterial Probe Data Usability 

 
• Probe data is recommended for operations and performance measures when the 

average signal density on a corridor is 1 signal per mile or less, the Average Annual 
Daily Traffic2  (AADT) is 40,000 or greater, and limited curb cuts and access points to 
disrupt traffic flow.  The quality of probe data on such roadways was observed to 
approach that of freeway data quality, and is expected to accurately capture a large 
majority of significant slowdowns.  On these roadways probe data can support a broad 
range of applications such as performance measures for MAP-21, planning studies, 
before and after analysis, traffic operations, and traveler information. 

• Probe data should be used with caution when the average signal density on a 
corridor is between 1 to 2 signals per mile or less, the AADT is between 20,000 and 
40,000 or greater, and the roadway has a moderate number of curb cuts and access points 
to disrupt traffic flow.  On such roadways, the VPP data may fail to capture significant 
slowdowns up to 50% of the time.  Probe data may be used for comparative before and 
after studies and as an operations support tool.  However, data should be test if used for 
performance measures, planning, or traveler information.  

• Probe data is NOT recommended for operations and performance measures when 
the average signal density on a corridor is 2 signals per mile or greater, the AADT 
falls below 20,000, substantial curb cuts and access points to disrupt traffic flow, and/or 
number of lanes fall below two per direction.  On such roadways, the VPP data is 
expected to not capture the majority of significant slowdowns, and is not recommended 
for applications at this time. 

 
Probe data performance correlated best with signal density.  Although other geometric attributes 
are listed in Table ES-1, signal density is the foremost indicator of probe data performance.  
Increased volume, as measured by AADT, will increase accuracy of probe data all other factors 
being equal.  However, volume of traffic alone does not overcome the challenges of reporting 
accurate speed and travel time as a result of the complex stop and go motion of vehicles on 
arterials with dense signal spacing. 
 
Probe data quality is anticipated to improve in time with increased probe density and improved 
algorithms.   Data collection in spring of 2015 on US-1 in Virginia showed evidence of 
improvement.  Arterial data quality should continue to be periodically monitored by the 
Coalition’s validation efforts. 
 
Throughout all the testing the VPP data exhibited some fundamental issues related to traffic 
characterization on signalized roadways.  These fundamental issues included: 
                                                 
2 Average Annual Daily Traffic as defined by HPMS 

 RECOMMENDED       SHOULD BE TESTED  NOT RECOMMENDED

 ● <= 1 signal per mile  ● 1 to 2 signals per mile  ● >= 2 signals per mile
 ● AADT > 40,000 vpd (2-way)  ● AADT 20K to 40K vpd (2-way)  ● AADT < 20K (2-way) - low volume
 ● Limited curb cuts  ● Moderate number of curb cuts  ● Substantial number of curb cuts

Principal Arterials Minor Arterials Major Collectors
Likely to be accurate… Possibly accurate, test … Unlikely to be accurate…
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• Probe data consistently errored toward faster speeds during congested periods. As 
probe data quality improves it will report the full extent of slowdown more accurately, 
and congestion may appear to grow worse when in actuality it is only the quality of the 
probe data that is improving.  This scenario has been corroborated by early adopters of 
probe data for arterial performance measures. 

• Whenever platoons of vehicles were consistently split by a red light resulting in two 
distinct speed profiles, probe data invariably reported the faster of the two modes.  
This phenomenon was independent of the type of roadway and their geometric attributes, 
and appeared any time bi-modal flow was encountered with only a handful of exceptions.   

• Complex flow patterns common on signalized roadways cannot be observed in VPP 
data.  Bi-modal flow resulting from a portion of the platoon progressing on green and a 
portion forced to stop till the next cycle is just one example of complex flow.  Probe data 
reports only an average speed, and, unlike BTM data, provides no information on the 
variation of speed.    

 
This validation effort was the most expansive to date and resulted in several findings related to 
appropriate validation methodology for arterials.  A by-product of this validation effort was the 
advancement of appropriate methodologies for arterial analysis, and documenting the 
shortcomings of procedures originally created for freeway analysis.  Future arterial validation 
efforts (as well as future work in the areas of appropriate arterial performance measures) should 
consider the advancements in the use of the various methodologies employed herein.  
 
As a result of the findings of this study, the following recommendations are made to the I-95 
Corridor Coalition and its members. 

• The I-95 Corridor Coalition should continue to monitor outsourced probe data 
fidelity on arterials as part of the VPPII initiative.  Probe data quality is anticipated to 
improve as probe data densities increase, and algorithms allowing for point pairing 
improve.  Validation of multi-vendor probe data available in VPP II will continue to 
benchmark industry capability moving forward. 

• Future work on arterial performance measures and probe data validation on 
arterials should build on the methodologies established, realizing that freeway 
measures and methods are inadequate on arterials.   Future effort should engage traffic 
engineering community along with the planning and operations community to merge 
current work on arterial management with probe data initiatives. 

• The Coalition should engage probe data providers and industry researchers to 
explore and prototype new data items capable of fully characterizing the complex 
arterial travel patterns including resulting from signal control.  At the base of this 
discussion are issues related to ‘what should be reported?’.  Current practice of mean 
speed measurements alone fail to capture the dynamics of arterial traffic flow.   

 
The I-95 Corridor Coalition’s Vehicle Probe Project continues to lead the country as the 
epicenter for probe-based operations and planning performance measures.  The unique nature 
of a common licensing agreement combined with common data formats and analysis tools 
provides the best foundation to continue to advance arterial performance measure practice 
from a multi-state, industry and research collaborative environment.   
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Validation Results for Arterial Probe Data 

1.0  Introduction and Background 
The I-95 Corridor Coalition’s Vehicle Probe Project (VPP) began in 2008 with a vision of an 
East Coast wide traffic monitoring system that provided a common operations picture to all 
jurisdictions, as well as a basis for performance measurement.  That vision included freeways as 
well as major arterials which provide access to the freeway system and arterials that provide 
alternative paths in the event of incidents or severe congestion.   For this reason signal-controlled, 
interrupted-flow facilities, generally referred to as arterials within this report, were included in 
the original procurement for the VPP.  Such arterial facilities have taken a more prominent role 
now that the VPP has entered its second phase, referenced as VPPII.  The procurement 
specifications for VPPII began to put quality requirements on arterials based on knowledge 
gained during the VPPI validation program.   The first few years of the VPPI validation program 
were dedicated primarily to freeway data quality.  As the freeway data quality became better 
understood, validation resources were diverted to explore the relatively unknown arterial probe 
data quality. 

The initial look at arterial data quality occurred from 2008 through 2010 resulting in an initial 
white paper to the Coalition summarizing the analysis.  In 2011 and 2012, several targeted data 
collections were performed that furthered the understanding of probe data on arterials, and whose 
results were conveyed in a webinar in 2013 to the Coalition.  The work from 2011 to 2012 also 
resulted in a new method to assess accuracy based on the analysis of repeatable traffic patterns.   
This method was based on overlaying multiple days of traffic data, typically weekdays, to 
reinforce recurring congestion patterns and boost the data density to observe the detail in such 
patterns.   Statistical summaries of the overlay method, specifically Cumulative Frequency 
Diagrams (CFD), provided direct measures of the statistical travel time distribution.  Starting in 
2013, several targeted arterial data collections were planned, building on information learned in 
the prior two efforts.  This report is a result of the information gained from the targeted data 
collections which were conducted in 2013 and 2014.  Because the data collection and analysis 
methodologies used in the 2013 to 2014 effort built on the previous findings, a review of the 
2010 white paper and 2013 webinar are provided as background.   

Summary of Initial Analysis – November 2010 
As opportunity allowed from 2008 through 2010, a portion of the Bluetooth traffic monitoring 
(BTM) sensors were placed on adjoining arterials when collecting reference data for freeway 
validation. This enabled the University of Maryland (UMD) to begin to explore VPP data fidelity 
on arterials.   The results of these activities revealed more about the contrast between arterial 
traffic flow and freeway traffic flow than they revealed about VPP data quality on arterials.  
Several issues were identified that impacted arterial data quality (both from probe data and BTM 
reference data) as well as its validation process.  The significant findings from this initial 
analysis included: 

• Interrupted-flow arterials encompass a wide variety of functional road classes 
spanning high-volume, multi-lane arterials, all the way down to low-volume local streets.  
Initial results indicated that probe data was likely to be usable for some applications on 
the higher class facilities, specifically those that are multi-lane, exhibit sparse signal 
spacing, and medium to low mid-block friction. 
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• Traffic flow on arterials is more diverse than on freeways (referring specifically to 
speeds and travel times), resulting in higher speed variation on arterials.  Higher speed 
variance in turn requires a higher sampling rate to attain the same level of data quality or 
confidence.  The primary cause of the higher variation is directly attributable to signal 
control.  On any given segment containing signal control, traffic progresses through a 
cyclic pattern which includes deceleration, queuing, queue dissipation on green, 
acceleration and then free-flow, which repeats itself with each signal cycle.  Not only do 
speeds vary considerably along the length of the segment, the travel times experienced by 
vehicles also vary depending on their position in the traffic stream relative to the signal 
cycle.  Some may make it through the corridor on all green, while other may be forced to 
wait until the next cycle.  Large speed variations are induced primarily by signal control, 
however increased turning opportunities afforded by mid-block access to goods and 
services contribute as well. 

• In addition to higher overall variance in speeds, traffic signals on arterials tend to 
divide traffic into pulsed flows, with two or more distinct travel times, with the 
difference between these times equal to the prevailing signal cycle time.  Several of the 
test segments exhibited two distinct travel times in which approximately half the platoon 
made it through a signalized corridor without stopping, while the other half of the platoon 
was forced to stop and wait for the green phase to complete the segment.  These bi-modal 
flows are a significant technical challenge to effectively use any type of arterial traffic 
data, not just probe data.    

• Maximum traffic volume on arterials is generally half that of freeways for the same 
geometric configuration (number of lanes).  Combining lower volume with the impact 
of higher variance (which requires larger sample sizes), it was anticipated that VPP probe 
data would be challenged to provide quality traffic data due to its inherent sampling 
nature.  Similarly, decreased volumes and higher variance also limit opportunities to 
validate with BTM reference data, as it is also a sampling technology. 

• Congested flow is more difficult to discern from free-flow conditions on arterials 
than on freeways. Whereas freeway congestion can be identified with a simple speed 
threshold, differing travel times occur on arterials at different times of day due to the 
different signal timing plans in effect.  The freeway validation method, which emphasizes 
performance during congested periods, would be difficult to adapt for arterials.  

• Traffic Message Channel (TMC) codes (the prevailing industrial standard for roadway 
segmentation), though adequate for most freeway applications, may not be adequate for 
the complexity of arterial networks.   On freeways, TMC segments break at each break 
in access, whereas on arterials, TMC segment breaks are less consistent, breaking 
primarily at intersections with major facilities.  Signalized intersections with minor 
facilities are contained in a single TMC.  In addition, TMC coverage can be 
discontinuous. 

These finding were summarized in a contrast chart between freeway and arterial traffic flow as 
shown in Table 1 below. 
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Table 1. Contrast of Freeway and Arterial characteristics 

 Freeways Arterials 

Volume 2200 vphpl* 1400 vphpl* on green 

Speed Range 20-70 mph 10-45 mph 

Freeflow 65 mph Unknown 

Congestion Types 
Recurring / Non- 

recurring 
Cycle Failure / Mid-Block 

Friction 

Congestion Signature / 
Incident 

Slowdowns  < 55  

mph 
Difficult to recognize 

Flow characteristic Uniform 
Higher Variance, 

Frequently Bi-Modal 

Traffic Message 
Channel (TMC) 

Adequate / Breaks at each 
access 

Inadequate / Breaks at only at 
major facilities  

*Vehicle per hour per lane 

 

With these finding in mind, UMD diverted more validation resources to arterial roadways from 
2011 to 2012, targeting arterial roadways identified as ‘higher-class facilities, those that are 
multi-lane, exhibit sparse signal spacing, and have medium to low mid-block friction.’    

Summary of Second Phase Analysis – January 2013 
Beginning in 2010, UMD collected validation data sets on US-1 in Pennsylvania and Virginia, 
State Route 3 in Maryland, and State Route 13 in Delaware.   Using the basic tools developed for 
freeway validation, the results from these four arterial validations reinforced the previous 
findings, and began to further clarify when probe data should be considered for use.  Probe data 
quality on arterial facilities was found to be most correlated to traffic volume and secondarily to 
signal density in these exercises.  The analysis indicated that probe data began to exhibit 
consistent quality on arterial roadways once Average Annual Daily Traffic (AADT) surpassed 
30,000.  These findings were obtained by visual review of graphs that directly plotted BTM 
reference data against VPP data over a 24 hour period.   

It was also observed that the traditional freeway validation metrics of Average Absolute Speed 
Error (AASE) and Speed Error Bias (SEB) did not consistently correlate well to the results 
obtained from careful review of the data.   
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Average Absolute Speed Error (AASE)  
The AASE is defined as the mean absolute value of the difference between the mean 
speed reported from the VPP and the reference mean speed for each five minute time 
period.  The AASE is the primary freeway accuracy metric, and reflects the variation of 
the probe data with respect to the reference data.  Contract specifications for freeways 
allow a maximum AASE of 10 miles per hour (MPH) in each of four speed ranges.  
Speed ranges for freeway validations are defined as 0-30 MPH, 30-45 MPH, 45-60 MPH, 
and > 60 MPH.  

Speed Error Bias (SEB)  
The SEB is defined as the average speed error (not the absolute value) in each speed bin.  
SEB is a measure of whether the speed reported in the VPP consistently under or over 
estimates speed as compared to ground truth speed.  Contract specifications for freeways 
allow a maximum SEB of ± 5 MPH in each speed range as defined previously. 

The reason for this discrepancy is related to the high-variance and often multi-modal nature of 
arterial traffic data.  Within the freeway methodology, the AASE and SEB are measured against 
the 95th confidence interval of the mean of the reference data, referred to as the Standard Error of 
the Mean (SEM) band.  For freeways, the SEM band accounts for uncertainty in the BTM 
reference data arising from either low number of samples, or high variance in the reference data.  
The SEM band discounts (or de-weights) validation results whenever confidence in the mean 
speed as measured by BTM data was low.  On freeways the SEM band is relatively narrow much 
of the time, usually about two mph on average.   There are periods when the SEM band does 
become significant.  Such periods include:  

• Overnight periods when the number of data samples are low and vehicles travel at 
differing speeds according to driver preference  

• Occasional traffic incidents in which traffic progresses at distinct and differing speeds 
such as when traffic is diverted around an accident in two distinct paths 

• Facilities that have special use lanes such as local and express lanes in which each set of 
lanes travel at distinctly different speeds, creating a large SEM band.  

Such time periods in which the SEM becomes significant on freeways is a small fraction of the 
overall observations.  In contrast, much of the arterial traffic data exhibited high-variance as a 
result of the basic nature of the arterial facilities (as previously discussed), as well as frequently 
exhibited multi-modal flow as a result of signal control.  As a consequence, the SEM band was 
frequently wide, yielding measures of AASE and SEB that appeared to fall within the quality 
guidelines established for freeways, but did not correlate with the quality as revealed from visual 
inspections of data.  

In 2012, UMD began to look at case studies from permanent installations of BTM equipment on 
US-1 in Northern Virginia available as a result of a federal demonstration grant.  The validation 
process adapted some statistical techniques inspired from floating car runs typically employed to 
assess the before/after impact of signal retiming.   These techniques were initially applied to 
BTM data on US-1, and led to the use of overlay plots and distribution analyzes as explained 
below as a better method to quantify probe data fidelity   

Overlay plots are constructed by taking multiple days of observation and graphing them on a 
single 24 hour timeline.  Typically only data from weekdays are combined, excluding data from 
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weekends. This method of overlaying data on a single 24-hour plot reinforces repeatable traffic 
phenomenon, enhancing the density of travel-time samples and thus increasing the visible detail 
of any recurring congestion.  Figure 1a is an example of an overlay plot for an arterial segment.  
Each travel time data point collected using BTM equipment on a weekday from an approximate 
two week period is graphed on a 24 hour timeline.  The relative density of the data provides a 
visual indication of the probability of traversing the corridor at the travel time indicated on the y-
axis. 

A corresponding distribution analysis is constructed from the data in the overlay plot.  Each 
curve in a distribution analysis (called a cumulative frequency diagrams or CFDs) is constructed 
from the percentiles of the travel time data in the overlay plot.  (CFDs are also known as 
cumulative distribution functions, or CDFs, in statistical literature).   In the distribution analysis 
charts used in this validation, a CFD is constructed for each hour from the overlay plot 
(excluding overnight hours).   For example, the travel times from the overlay plot for the 
morning rush hour period from 8 AM to 9 AM are used to calculate the 5th, 10th, 15th, 20th, ….. 
95th percentile travel times.  The plot of those percentiles becomes the CFD for the 8 AM to 9 
AM morning rush hour.  Figure 1b is an example of a distribution analysis of the data in Figure 
1a.  Multiple CFDs from multiple one hour time periods throughout the day are plotted in the 
distribution analysis, creating an ensemble of curves.   The CFD for the evening rush hour from 
5 PM to 6 PM is plotted in black to highlight its CFD in contrast to the other hours of the day.  

 

Figure 1a. Sample 24 hour weekday overlay plot of BTM data. 
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NOT RECOMMENDED

 ● AADT 20K to 40K vpd (2-way)
 ● 2+ lanes per direction
 ● <= 2 signals per mile
 ● Moderate number of curb cuts

Possibly accurate probe data…

 ● AADT < 20K (2-way) - low volume
 ● <= 2 lanes per direction
 ● >= 2 signals per mile
 ● Substantial number of curb cuts

Unlikely probe data is accurate…

Principal Arterials Minor Arterials Major Collectors

RECOMMENDED SHOULD BE TESTED

 ● AADT > 40,000 vpd (2-way)
 ● 2+ lanes per direction
 ● <= 1 signal per mile
 ● Limited curb cuts
Likely to have accurate probe data…

 
Figure 1b. Sample CFD plot of hourly traffic distribution patterns. 

This overlay approach and distribution analysis overcame many of the issues related to 
insufficient sample size, high-variance, and multi-modal data.  Whereas the strength of the 
traditional analysis is to assess point-in-time performance, the strength of the distribution 
method is to assess the ability of the traffic data to capture repeatable patterns of weekday traffic.    
The CFD plots also provide a method to directly calculate many common travel-time and travel-
time reliability measures.  As a result, common performance measures such as the travel time 
index (TTI), buffer time index (BTI), planning time index (PTI), medians, etc., could be directly 
calculated and compared for peak periods between probe data and BTM reference data. 

The second initiative concluded in early 2013 with an attempt to quantify the attributes which 
determine whether or not VPP probe data could be effectively used.  Table 2 below was created 
primarily based on the results from the second initiative, and augmented with early observations 
from the current initiative.  It summarizes expectations regarding the fidelity of probe data based 
on a number of geometric attributes.  This table also provided an expectation of ‘predicted 
performance’ for each corridor in the case studies from 2013 to 2014 which was then contrasted 
against observed performance. 

Table 2. Arterial Probe Data Usability 

Having established workable tools, as well as having exhaustively sampled and verified freeway 
data fidelity, the Coalition directed much of its validation efforts in 2013 and early 2014 to 
sampling a variety of arterial corridors to further quantify the value of probe data for various 
functional classes of arterial roadways. 
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2.0  Case Study Locations 
From April 2013 through June 2014, the UMD deployed BTM data collection equipment on nine 
separate occasions, covering a variety of arterial roadways from North Carolina to New Jersey.  
Table 3 below lists the data collection trials and the roadways covered.  These nine test locations 
were chosen in consultation with the Coalition member having jurisdiction over the roadway.  
Sites were chosen that were of interest to the Coalition member, anticipated to provide samples 
of congested and uncongested traffic flow, and had geometric attributes within the bounds listed 
in Table 2.  In general, most roadways that were selected were multi-lane facilities with an 
AADT of 20,000 or greater.  A minor portion of roadway segments within some study areas fell 
below this threshold.   For each roadway (more specifically, each segment of each roadway), the 
geometric and traffic attributes were documented including: 

• Traffic volume as reported by the Highway Performance Management System (HPMS) 

• Posted speed limit 

• Signal density 

• Access density (curb cuts, driveways, and crossroads) 

• Number of lanes 

• Road geometrics (median barriers, turn lanes, etc.) 
Each roadway corridor chosen for data collection provides a case study for the effectiveness of 
VPP data.  This approach creates a cross reference for similar facilities.  The performance of 
VPP data on any given arterial roadway can be estimated by the performance of similar 
roadways from this validation exercise with respect to volume, speed limit, signal density, and 
other geometric attributes.   
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Table 3. Case Study Locations and Attributes 
  

Case 
Study 

Number 

Data Set 
(State-

ID#) 

Road 
Number Road Name Validation 

Date Span 
# of 

Segments 

# of 
Through 

Lanes 

AADT Min-
Max / 

Weighted 
Average1 (in 

1000s) 

Length 2 
(mile) 

# Signals 
/ 

Density3 

# of 
Access 
Points 

Median 
Barrier 

Speed 
Limit 
(mph) 

1 NC-06 NC-55 Williams St, Apex 
Hwy. 

Apr 30-
May 13, 

2013 
18 1-3 15-43/25 30.3 62 / 2.05 231 Partial 35-50 

2 MD-07 
MD-355 

Wisconsin Ave, 
Rockville Pike, 
Hungerford Dr, 

Frederick Rd 
July 6-20, 

2013 

10 2-4 32-67/44 17.1 67 / 3.9 221 Partial 30-45 

MD-586 Veirs Mill Rd 6 2-3 21-43/34 6.2 19 / 3.1 56 Yes 30-45 

3 NJ-11 

US-1 Trenton Fwy, 
Brunswick Pike 

Sep 10 - 24, 
2013 

10 2-4 33 – 90/70 14.2 10 / 0.7 112 Yes 55 

NJ-42 Black Horse Pike 8 2 25-54/48 12.5 23 / 1.8 260 Yes 45-50 

US-130 Burlington Pike 10 3 42-42/42 14.3 28 / 2.0 229 Yes 50 

4 NJ-12 
NJ-38 Kaighn Ave. 

Nov 5-19, 
2013 

16 2-4 32-80/46 24.5 44 / 1.8 235 Yes 50 

NJ-73 Palmyra Bridge Rd. 18 2-4 33-74/52 23.9 41 / 1.7 236 Yes 45-55 

5 PA-05 
US-1 Lincoln Highway 

Dec 3 - 14, 
2013 

28 2 - 3+3 21 – 100/45 30.6 107 / 3.5 178 Yes 40 - 50 

US-322 Conchester Highway 6 1-2 22 – 34/25 14.3 7 / 0.5 48 No 35 - 45 
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1AADT weighted average is weighted by length of the segments 
2Uni-directional mileage, a 2 mile roadway in which both direction of travel are analyzed will result in 4 total miles of tested roadway. 
3Signal density is number of signals per mile 

 

6 PA-06 

PA-611 
Easton Rd 

Old York Rd Jan 9 - 22, 
2014 

14 1-4 18-32/27 20.5 68/ 3.3 227 Partial 15-45 

PA-611 N Broad St 12 2-4 16-30/21 12.5 144/ 
11.5 251 Partial 25-40 

7 VA-07 

VA-7 Leesburg Pike and 
Harry Byrd Hwy April 5-16, 

2014 

30 2-4 45-60/56 30.5 57 / 1.9 203 Yes 35-55 

US-29 Lee Hwy (S 
Washington St)  4 2 14-25/21 4.4 22 / 5.0 114 Partial 30 

8 VA-08 US-29 Lee Hwy May 8-19, 
2014 26 2-4 15-45/33 31.9 115/3.6 287 Partial 35-50 

9 MD-08 MD-140 
Reistertown Rd 

Jun 5-17, 
2014 

20 1 - 3 19-44/31 17.4 68 / 3.9 221 No 30-40 

Baltimore Blvd 8 2 - 3 40-53/42 15.5 18/ 1.2 52 Partial 50-55 



 

 
I-95 Corridor Coalition Vehicle Probe Project Evaluation  14 
July, 2015 

3.0   Individual Case Study Analysis Methodology 
A full analysis was performed resulting in individual reports with a summary of findings for each 
case study listed in Table 3.  A Web Portal has been created that contains all the analytical 
results for each roadway segment of each case study.  The Web Portal can be accessed at 
[https://app.box.com/I95-ArterialValidationArchive ].   The portal is organized hierarchically in 
directories by case study name (i.e. NJ-11, NJ-12, etc.).   

For each case study, the analysis is organized into four sections: (1) Roadway Attributes, (2) 
Traditional Validation, (3) Sampled Distribution Method, and (4) Discussion of Results as 
explained in further detail later in this section.  A standard naming scheme is used for each 
segment in the report.  A segment is referenced by the case study name (which is a state 
abbreviation followed by an ID#), and then the segment within that case study.   For example, 
NJ11-03 refers to the 3rd segment from case study NJ11.  This naming scheme is consistent in 
each case study as well as this final summary report.  [Note that in some material, the segment 
number may be augmented with leading 0’s, such as NJ11-0003, in the example given.]  The 
assignment of segment numbers within a case study is typically sequential along the direction of 
travel.  Exceptions occur.  For example, NJ11 begins with segment 03 rather than segment 01.  
Such exceptions typically indicate a field data collection issue that prevented analysis of a certain 
segment, and thus some segments were omitted from reporting.   

Each individual case study report provides representative samples from the various analysis 
methodologies.  Along with the individual case study report available in the Web Portal, the full 
analysis results from each type of analysis are included.  These analysis reports include: 

• Traditional Analysis Report: This document conveys results of the initial freeway-centric 
validation process.  This report contains segment by segment results for the AASE and 
SEB comparisons between the VPP data and the BTM reference data collection.   

• Traditional Graphs: This series of folders contains the daily 24 hour graphs for each 
segment, for each day, contrasting the VPP data with the BTM reference data at five 
minute intervals.  Each validation segment has a sub-folder containing a comparative 
graph for each day of the validation.  Representative graphs in the case study report, and 
even in this overall summary are drawn from these archives. 

• Distribution Analysis: This folder consists of graphs that compare BTM and VPP data 
using the distribution analysis methodology for each segment.  The first set of graphs 
consists of 24 hour overlay plots for all days (weekends and weekdays combined), 
weekdays only, and weekends only similar in format to Figure 1a.  The second set of 
graphs presents overlay scatter plots and cumulative frequency diagrams (CFDs) 
highlighting each hour of the day similar in format to Figure 1b.  The distribution 
analysis graphs containing the CFDs are provided only for weekdays. 

At any time the reader can access the Web Portal to obtain a more detailed analysis for any 
segment or corridor.  

Each individual case study report summarizes the analysis results of each case study, and is 
organized into sections as follows: 

(1) Roadway Attributes:  This is a detailed description of the individual segments 
comprising the case study.  In contrast to freeways, the expected or nominal operation of each 

https://app.box.com/I95-ArterialValidationArchive
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arterial segment is unique and dependent on a number of variables.  Understanding the segment 
and where it falls within the throughput / land access (mobility/ accessibility) spectrum is critical 
when reviewing validation results. The roadway attributes table presents information about 
roadway geometry, TMC codes, placement of BTM sensors and general description/notes for 
each segment in each case study.   Each roadway attribute table includes the following data items 
for each segment. 

• SEGMENT / (Map Link) - Segment number linked to Google Maps for convenience of 
viewing. 

• Geometric Description  
o Crossroads Start/End – The primary landmark, typically an intersection, that 

demarks the beginning and end of the segment.  The landmark may also be 
political or geographical in addition to crossroads. 

o Lanes - the minimum and maximum number of through lanes observed on the 
segment obtained from aerial photography. 

o AADT - the minimum and maximum AADT reported as obtained from the 
publicly released Highway Performance Monitoring System (HPMS) shapefiles. 

o Signals: Number and Density -the total number of signalized intersections on 
the segment as obtained from aerial photography.  If the segment begins at a 
signalized intersection, that intersection is not included in the count (it will be 
included in the preceding segment).  Density is calculated by number of signals 
divided by segment length. 

o Number of Access Points –includes intersections with other roads (other than 
signalized intersections) and entrances to business centers and malls. Data is 
obtained from aerial photography. (A driveway to a house is not considered an 
access point.) 

o Speed Limit – posted speed limit as obtained by street view photography. 

o Median Barrier – the existence of a median barrier on the segment that prevents 
left hand turning movements except at designated access areas as obtained by 
aerial photography. 

o Number of Major Junctions - the number of junctions with another roadway of 
significantly higher class such that the segment acts as a feeder/distributer to 
another roadway at that junction.  Criteria for a major junction:  

 If crossroad is a freeway  

 If crossroad intersection is a grade separated interchange and the number 
of through lanes is the same or greater than the segment 

 If crossroad intersection is signalized, the number of through lanes of the 
cross road is greater than the segment 

• TMC Codes 
o Begin//End – the beginning and ending Traffic Message Channel (TMC) code for 

the segment.  
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o Length - the combined length of all TMCs for the segment in miles. 

o Number (#) - total number of TMCs that exist on the segment. 

• Bluetooth Data Sensor 
o Begin//End – the begin/end BTM sensor identifier. 

o Length – the distance between the upstream and downstream BTM sensor. 

o % Diff –the percentage difference between the TMC length and BTM sensor 
length. 

• General Description – this section provides a general description and notes about the 
segment. 

(2) Traditional Validation:  The second section of each case study report provides a summary 
of the traditional validation process originally established for freeways and adapted for arterials 
based on AASE and SEB by speed category.  The methodology used on arterials follows the 
process developed for freeways as documented in the Corridor Coalition’s archive of freeway 
validations. (Available at http://www.i95coalition.org/wp-content/uploads/2015/02/I-95-CC-Final-
Report-Jan-28-2009.pdf?5a9c76 )  The speed categories used for arterial analysis differ from those 
used for freeways.  Speed bins are adjusted to appropriate levels for the facility. Typical speed 
ranges for arterials are 0-15 mph, 15-30 mph, 30-45 mph, and >45 mph, though the actual speed 
ranges will differ based on the facility.  Apart from the speed bins, the analysis methodology 
remains the same as that for freeways.  A full traditional validation report is available for each 
case study providing segment specific as well as overall corridor analysis.  The traditional report 
for each case study is made available to the reader via the Web Portal.     

A by-product of the traditional analysis are daily 24-hour graphs contrasting the VPP data with 
the BTM reference data and its five minute mean and standard error of the mean (SEM) limits.  
Representative samples of these graphs are frequently exhibited in the individual case study 
reports to exemplify issues observed with data quality.  A sample 24-hour data plot is shown in 
Figure 2 from a principal arterial facility.  Each individual BTM reference datum is depicted as a 
blue ‘x’, and reflects the speed of a single vehicle based on its measured travel time.  In 
aggregate, these observations form a cloud of data indicating the ranges of speeds directly 
observed on the test segment for any given time.  The BTM reference data are shown in contrast 
to the average speed reported by the VPP data averaged into five-minute intervals.  The VPP 
five-minute speed data are depicted with red diamonds.  The agreement between the BTM 
reference data shown in blue and the VPP data in red forms the basis of comparison.    

Other attributes visible on the 24-hour graph include BTM outliers, and the mean and SEM band 
of the BTM reference data.  If a BTM data point is determined to be an outlier based on a 
statistical test, it is demarked with a black ‘.’ overlaid on the blue ‘x’.  The majority of BTM 
outliers are created by vehicles that take significantly longer time to traverse the test segment 
than other vehicles.  These BTM data points typically appear as speed measures between zero 
and five miles an hour, indicating that the vehicle stopped for services within the test segment 
such as fuel or food.    

The mean of the BTM reference data (excluding outliers) is depicted as a solid black line, and 
the standard error of the mean (SEM) band is plotted using black dashed lines, ‘---’, about the 
mean.  This SEM band reflects the 95th percent confidence interval about the mean of the BTM 

http://www.i95coalition.org/wp-content/uploads/2015/02/I-95-CC-Final-Report-Jan-28-2009.pdf?5a9c76
http://www.i95coalition.org/wp-content/uploads/2015/02/I-95-CC-Final-Report-Jan-28-2009.pdf?5a9c76
https://app.box.com/I95-ArterialValidationArchive
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reference data.  A narrow SEM band reflects low variance in the BTM speed data, whereas a 
wide SEM band reflects significant variance in the BTM reference data.   

Each graph is for a single day (generally 24 hours in length) within the data collection period.  
The plot reflecting the first and last day of data collection may be less than 24 hours depending 
on the time when the BTM sensor placed and collected. 

 

Figure 2. Sample daily plot of the traditional analysis for a freeway highlighting 
plotting convention 

A sample 24-hour graph from a lesser arterial roadway is shown in Figure 3.   In contrast to the 
principal arterial shown in Figure 2, the lesser arterial has fewer reference BTM data points.  
Also, the SEM band is significantly wider owning to a larger variance of observed reference 
speed which is typical as a roadway provides increased accessibility.  Such graphs are used 
extensively to illustrate data quality issues in the individual case study reports.  A complete 
archive of 24-graphs for each segment for each case study is available through the Web Portal. 

 

https://app.box.com/I95-ArterialValidationArchive


 

 
I-95 Corridor Coalition Vehicle Probe Project Evaluation  18 
July, 2015 

 

Figure 3. Sample daily plot of the traditional analysis on a minor arterial 
The culmination of the traditional analysis is tabulated measures of AASE and SEB for 
individual segments as well as for the corridor as a whole.  A sample of the corridor level 
tabulation is shown in Table 4 for the US-1 principal arterial illustrated in Figure 2.  Table 5 
provides the traditional results for the lesser arterial from Figure 3.  Corridor results are included 
in each case study report.  Individual segment results are available in the traditional report 
accessible via the Web Portal. 

 

  

https://app.box.com/I95-ArterialValidationArchive
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Table 4.  Sample of the AASE and SEB Results on a Principal Arterial Corridor 

Speed Bin 

Average 

Absolute Speed Error           
(<10mph) 

Speed Error Bias              
(<5mph) Number 

of 5 
Minute 

Samples 

Hours of 
Data 

Collection Comparison 
with SEM 

Band 

Comparison 
with Mean 

Comparison 
with SEM 

Band 

Comparison 
with Mean 

0-15 MPH 2.9 4.4 2.8 3.8 224 18.7 

15-25 MPH 5.3 7.3 5.2 6.9 1742 145.2 

25-35 MPH 5.4 9.6 5.2 8.8 3155 262.9 

>35 MPH 2.3 6.5 -1.3 -2.9 21276 1773.0 

All Speeds 2.9 6.9 -0.1 -0.8 26397 2199.8 

 

Table 5.  Sample of the AASE and SEB Results on a lesser Arterial Corridor 

Speed Bin 

Average 

Absolute Speed Error           
(<10mph) 

Speed Error Bias              
(<5mph) Number 

of 5 
Minute 

Samples 

Hours of 
Data 

Collection Comparison 
with SEM 

Band 

Comparison 
with Mean 

Comparison 
with SEM 

Band 

Comparison 
with Mean 

0-15 MPH 7.2 11.9 7.1 10.7 1540 128.3 

15-25 MPH 3.8 7.4 3.7 7.4 4124 343.7 

25-35 MPH 1.3 6.8 0.5 1.8 5060 421.7 

>35 MPH 2.5 6.2 -1.2 -3.9 6828 569.0 

All Speeds 2.5 6.2 -1.1 -3.7 17552 1462.7 

 

(2) Slowdown Analysis Method: The slowdown analysis is an offshoot of the traditional 
analysis, developed to provide a more intuitive measure of probe data’s ability to capture 
congestion events.  The slowdown analysis is effective in quantifying the ability of probe data to 
capture significant disruptions in traffic.  The definition of a slowdown is when traffic speed 
reduces by at least 15 mph for a period of one hour or more.  On slower speed arterials, the 
threshold may be reduced to a reduction in speed of 10 mph, and the duration of 30 minutes or 
greater.  For each observed slowdown in each 24-hour data plot, the analyst rates the 
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performance of the probe data base on the reported speed reduction and duration on slowdown.  
Each slowdown is classified as either ‘Fully Captured’, ‘Partially Captured’, or ‘Failed to 
Capture’ as explained below. 

• A Fully Captured slowdown indicates that the probe data accurately characterized both 
the reduction in speed, and duration of the slowdown.  The error in speed reduction or 
duration cannot exceed 20%.  An example of a fully captured slowdown is shown below. 

 

Figure 4.  An example of a fully captured slowdown 
• A Partially Captured slowdown indicates that the probe data reported a significant 

disruption to traffic, but the extent of speed reduction or duration of time were in error by 
more than 20%.  An example of partially captured slowdown is shown in Figure 5. 

Fully Captured 
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Figure 5.  An example of a partially captured slowdown 

• Failed to Capture indicates that the probe data either completely missed the slowdown, 
or the extent of speed reduction or duration of the event were significant in error such that 
the slowdown would not be interpreted as a significant disruption to traffic.  An example 
of failed to captured slowdowns are shown in Figure 6. 

 

Partially Captured 
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Figure 6.  An example of a failed to capture slowdown 

(3) Sampled Distribution Method:   The third section of each case study report contrasts VPP 
and BTM data using sampled distribution methods based on 24-hour overlay plots and CFDs as 
previously described.  Overlay and CFD plots for representative segments are provided for each 
case study to illustrate findings.   A full listing of the overlay and CFD charts for each segment 
of each case study are provided via the Web Portal.  Figure 7 and Figure 8 provide samples of 
the overlay and CFD plots respectively comparing VPP data with BTM reference data.   The 
CFD plot in Figure 8 highlights the 8 AM to 9 AM peak travel hour.   

   

 

Failed to Capture 

https://app.box.com/I95-ArterialValidationArchive
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Figure 7. Sample BTM (Top) and VPP (Bottom) 24-hour overlay plot 

 
Figure 8. Sample BTM (Top) and VPP (Bottom) CFD Diagrams 
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In addition to visual comparisons, standard performance measures are calculated for the 
highlighted hour as shown in Figure 8. These hourly performance measures include: 

• Travel Time Index (TTI) -   ratio of the travel time central tendency (the median travel 
time is used) to the free flow travel time (estimated using the 15th percentile travel time) 

• Planning Time Index (PTI) -   ratio of the 95th percentile travel time to the free flow 
travel time (15th percentile travel time) 

• Buffer Time Index (BTI) -   difference between the 95th percentile travel time and travel 
time central tendency (the median travel time is used) divided by central tendency (the 
median travel time is used) 

• 25th, 50th, 75th and 95th Percentiles – percentiles directly calculated from the travel time 
distribution  

• Interquartile Range (IQR) - difference between 75th and 25th percentile travel time 
(4) Discussion of Results:   The final section of each case study report provides a summary of 
the significant findings, and an assessment of the usability of the probe data for various 
performance measure applications. 
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4.0   Summary of Case Study Results 
The analysis methods described in the previous section were applied to all the arterial corridors 
within the nine case studies listed in Table 3 to assess the effectiveness of VPP data across a 
broad sample of arterial roadways.  This section provides an overall summary and emphasizes 
correlations between arterial attributes and anticipated probe data quality.  The archive of graphs, 
data, tables, and individual reports available through the Web Portal provide the supporting data. 

Although based on an analyst review rather than statistical compilations, the slowdown analysis 
provided the best insight on the fidelity of outsourced probe data for operations and performance 
measures.  The traditional method based on AASE and SEB provided meaningful insights, and 
the distribution method was effective if the corridor exhibited recurring congestion patterns.  
However, the slowdown analysis provided the best overall gage of quality provided that there 
were a sufficient number of traffic disruptions over the time period of the case study. 

Table 6 shows the percent of fully captured, partially captured and failed to capture slowdowns 
for each corridor within the nine case studies.  Table 6 also contains the roadway attributes 
which correlated best with the results of the analysis.  Note that the results from some case 
studies were omitted in the summary table if deemed insignificant. For example, freeway 
portions of PA-05, designated corridor code 5b, were excluded from the results as it is not an 
arterial roadway.   

 

  

https://app.box.com/I95-ArterialValidationArchive


 

 
I-95 Corridor Coalition Vehicle Probe Project Evaluation  26 
July, 2015 

Table 6. Slowdown Analysis Results 

 

Table 7 shows results of traditional analysis yielding average AASE and SEB for each corridor 
under investigation.  Each AASE and SEB score is comprised of two numbers separated by a 
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1 NC-06 1 NC-55 25 2.05 35-50 54 15.0% 44.0% 41.0% 

2 MD-07 
2a MD-355 44 3.9 30-45 9 44.4% 22.2% 33.3% 

2b MD-586 34 3.1 30-45 8 0.0% 37.5% 62.5% 

3 NJ-11 

3a US-1 70 0.7 55 101 63.4% 36.6% 0.0% 

3b NJ-42 48 1.8 45-50 4 0.0% 100.0% 0.0% 

3c US-130 42 2.0 50 4 25.0% 50.0% 25.0% 

4 NJ-12 
4a NJ-38 46 1.8 50 57 40.4% 38.6% 21.1% 

4b NJ-73 52 1.7 45-55 89 41.6% 46.1% 12.4% 

5 PA-05 
5a US-1(a) 45 3.5 40 - 50 78 28.2% 48.7% 23.1% 

5c US-322 25 0.5 35 - 45 58 50.0% 41.4% 8.6% 

6 PA-06 
6a PA-611 27 3.3 15-45 18 22.2% 33.3% 44.4% 

6b PA-611 21 11.5 25-40 5 0.0% 20.0% 80.0% 

7 VA-07 

7a VA-7(a) 56 1.9 35-55 75 24.0% 42.7% 33.3% 

7b VA-7(b) 55 1.6 45-55 22 4.5% 22.7% 72.7% 

7c US-29 21 5.0 30 1 0.0% 0.0% 100.0% 

8 VA-08 8 US-29 33 3.6 35-50 49 8.2% 42.9% 49.0% 

9 MD-08 
9a MD-140(a) 31 3.9 30-40 20 0.0% 35.0% 65.0% 

9b MD-140(b) 42 1.2 50-55 18 22.2% 66.7% 11.1% 
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slash (‘/’).  The number preceding the slash is the metric assessed against the mean of the BTM 
data.  The number after the slash is the same metric assessed against the SEB band.  Much of the 
arterial traffic data had high-variance resulting in a wide SEM band, which in turn tended to 
mask actual performance.  For this reason, assessing AASE and SEB against the mean rather 
than the SEM band is recommended on arterials.  The Vehicle Probe Project I contract specified 
a maximum of 10 MPH AASE and within ±5 MPH for SEB.  These specifications were based on 
the application needs for freeways, and are presented as reference benchmarks as no arterial 
specifications had been established. 
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Table 7.  AASE and SEB (Comparison with Mean / Comparison with SEM Band) 

Corridor 
Code 

Comparison with Mean / Comparison with SEM Band 

Average Absolute Speed Error< 10 MPH - VPPI 
Spec. 

Speed Error Bias 
 Within ±5 MPH - VPPI Spec 

Speed Bin Speed Bin 

0-15  
MPH 

15-25 
MPH 

25-35 
MPH 

>35  
MPH 

0-15  
MPH 

15-25 
MPH 

25-35 
MPH 

>35  
MPH 

1 13.9/9.6 10.9/3.4 5.6/1 5.1/1.3 13.7/9.6 10.5/3.3 3.8/0.7 -3.4/-1.1 

2a 12.7/6.4 7.3/3 3.7/0.9 12.5/6.3 12.7/6.4 7/2.9 1.3/0.3 -12.4/-6.2 

2b 13.5/7.5 8.6/3.4 4.7/1.2 7.8/2.9 13.4/7.5 8.2/3.3 2.3/0.8 -7.3/-2.8 

3a 4.4/2.9 7.3/5.3 9.6/5.4 6.5/2.3 3.8/2.8 6.9/5.2 8.8/5.2 -2.9/-1.3 

3b 13.4/7.4 10.3/3.6 6.4/1.3 5.6/1.8 13.4/7.4 10.1/3.6 5.3/1.1 -4/-1.6 

3c 19.9/12.2 13.8/5.1 7.1/2.8 4.9/1.5 19.9/12.2 13.7/5.1 6.5/2.6 -1.4/-0.6 

4a 12.8/9.5 11.8/7.5 7.7/3.1 4.9/1.5 12.8/9.5 11.7/7.5 7.2/3 -1.2/-0.6 

4b 7/4.7 9/4.1 7.5/3.5 5.2/1.8 7/4.7 8.8/4 6.4/3.2 0/-0.1 

5a 11.5/7.5 8.4/4.7 5.7/1.9 4.9/1.3 11.3/7.5 8.2/4.7 4.6/1.7 -2.7/-0.9 

5c 8.2/5.9 8.3/4.3 6.7/2.9 3.1/1.3 8.1/5.9 8.2/4.3 6.3/2.7 -0.1/0 

6a 9.1/4.9 6.1/2.9 4.1/1.1 6.1/2.3 9.1/4.9 5.7/2.8 1.7/0.6 -4.4/-1.7 

6b 6.5/3.3 3.4/1.3 5.3/2.1 12.9/5.5 6.4/3.3 1.5/0.8 -4.9/-2 -12.9/-5.5 

7a 10.8/7.5 7.8/4.5 6.7/2.6 6.3/2.2 10.7/7.5 7.3/4.3 4.8/2.1 -3.5/-1.6 

7b 19.3/18.3 13.8/10.8 12.4/6.6 5.2/1.7 19.1/18.2 13.4/10.6 12/6.5 -0.9/-0.6 

7c 8.1/3.9 3.7/1.2 2.5/0.6 8.7/5.2 8/3.8 2.8/1 -1.1/-0.5 -8.7/-5.2 

8 11.9/7.2 7.4/3.8 6.8/1.3 6.2/2.5 10.7/7.1 7.4/3.7 1.8/0.5 -3.9/-1.2 

9a 9.7/5.8 5.1/1.9 4.1/1.1 9.2/3.8 9.6/5.8 4.2/1.8 -1.5/-0.4 -9/-3.8 

9b 18.9/16.9 13.1/10.1 13.5/6.8 6.6/2.9 18.9/16.9 12.9/10.1 12.5/6.2 -2.9/-1.6 
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Quality of probe data correlated best with density of signals.  Figure 9 is a regression plot of the 
percentage of failed to capture slowdowns versus signal density.  The coefficient of 
determination (the percent of variation that is attributed to the least square regression on the 
independent variable), R2, is 0.40 (regression line a).  If corridor 6b is omitted from the 
regression, because it exerts significant leverage in the regression analysis, the resulting R2 is 
0.46 (regression line b).  Figure 10 is a regression plot of percentage of failed to capture 
slowdowns versus AADT, with an R2 of 0.31.  Although quality improves with increasing 
AADT (as expected), the correlation is not as strong as signal density.   

 

 
Figure 9.  Percent of failed to capture slowdowns versus signal density. 
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Figure 10.  Percent of failed to capture slowdowns versus average AADT. 

The sampled distribution method provided additional insight when corridors exhibited recurring 
congestion.  On some segments, the VPP data reflected the patterns in the BTM reference data, 
an example of which is displayed in Figure 11a for segment VA08-14.  The VPP travel time 
captures the recurrent congestion patterns during peak hours, but underestimates its magnitude.  
The median travel time during the AM peak period (8 AM to 9 AM) is 2.47 minutes as measured 
by VPP versus 3.17 minutes as measured by BTM.  Underestimating the magnitude of delay 
during congested periods was a recurring phenomenon in all case studies.   The resulting speed 
bias has implications if probe data is used for long term performance measures. 

On some segments VPP failed to capture the recurring congestion trend.  A representative 
example is shown in Figure 11b from segment MD08-03 in which VPP fails to capture the 
recurring evening delay.   
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Figure 11a.  24 hour overlay plot and CDF graph from 8AM to 9AM on segment 

VA08-14. 

 
Figure 11b. 24 hour overlay plot and CDF graph from 5PM to 6PM on segment 

MD08-03. 
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On several segments, the BTM data revealed a bi-modal distribution of travel time.  In no case 
study did the VPP data report any bi-modal pattern, only an average or central tendency.  When 
bi-modal travel times were encountered, the VPP typically favored the faster mode.  A 
representative sample is shown in Figure 12 from segment NJ11-21 in which the VPP reports the 
faster of the two observed modes.    This was a recurring phenomenon across all data sets.   

 

 
Figure 12. 24 hour overlay plot and CDF graph from 5PM to 6PM on segment NJ11-

21. 
 

 

  

0

1

2

3

4

5

6

7

Tr
av

el
 T

im
e 

(m
in

)

24 Hour Overlay Plot

 

 

0 2 4 6 8 10 12 14 16 18 20 22 24
0

1

2

3

4

5

6

7

Hour of Day

Tr
av

el
 T

im
e 

(m
in

)

 

 
0

20

40

60

80

100
CDF -- Focus Hour : 5PM to 6PM

Pe
rc

en
til

e

0 1 2 3 4 5 6 7
0

20

40

60

80

100

Travel Time (minutes)

Pe
rc

en
til

e

BlueTooth

VPP



 

 
I-95 Corridor Coalition Vehicle Probe Project Evaluation  33 
July, 2015 

5.0 Conclusions and Recommendations 
 

This validation effort resulted in several recommendations with respect to the use of outsourced 
probe data for operations and performance measure purposes, as well as considerations for future 
validation, emphasis and research within the Coalition.  Recommendations for the use of probe 
data on arterials are summarized in Table 8.  Although other geometric attributes are listed in 
Table 8, signal density was found to be the best predictor of probe data quality.  Increased 
volume will improve accuracy if all the other factors stay the same.  However, greater volume 
does not overcome the challenges of reporting accurate traffic data during complex stop and go 
traffic on arterials with dense signal spacing. 

 

Table 8.  Arterial Probe Data Usability 

 
• Probe data is recommended for operations and performance measures when the 

average signal density on a corridor is one signal per mile or less, and the AADT is 
40,000 or greater.  The quality of probe data for such roadways was observed to approach 
that of freeways.  Probe data on such roadways is anticipated to fully capture significant 
slowdowns the majority of the time, and fail to capture less than 10% of significant 
slowdowns.  The probe data can support a broad range of applications such as 
performance measures for MAP-21, planning studies, before and after analysis, traffic 
operations, and traveler information. 

• Outsourced probe data should be used with caution when the average signal density 
on a corridor is between one and two signals per mile. Increased AADT on such 
roadways will increase accuracy, but increased volume does not overcome issues when 
bi-modal flow is encountered.  Probe data is expected to fully or partially capture the 
majority of significant slowdowns, but fail to capture up to 50% significant slowdowns. 
If probe data is used for performance measurement, planning or traveler information, it 
should be tested.   Probe data on such roadways may be used for comparative before and 
after studies, realizing there may error in the data, but it will likely be common to both 
before and after results.   

• Probe data is NOT recommended when signal density is above two signals per mile.    
On such roadways, the VPP data is expected to fail to capture the majority of significant 
slowdowns.  Probe data is not recommended for any applications above the two signal 
per mile threshold at this time. 

 

 RECOMMENDED       SHOULD BE TESTED  NOT RECOMMENDED

 ● <= 1 signal per mile  ● 1 to 2 signals per mile  ● >= 2 signals per mile
 ● AADT > 40,000 vpd (2-way)  ● AADT 20K to 40K vpd (2-way)  ● AADT < 20K (2-way) - low volume
 ● Limited curb cuts  ● Moderate number of curb cuts  ● Substantial number of curb cuts

Principal Arterials Minor Arterials Major Collectors
Likely to be accurate… Possibly accurate, test … Unlikely to be accurate…
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Probe data quality is anticipated to improve in time with increased probe density and improved 
algorithms.   Data collection in the spring of 2015 on US-1 in Virginia showed evidence of 
improvement.  Arterial data quality should continue to be periodically monitored by the 
Coalition’s validation efforts. 

 

Throughout all the case studies, the VPP data exhibited some fundamental issues related to 
traffic characterization on signalized roadways.  These fundamental issues included:  

• Probe data consistently errored toward faster speeds during congested periods. The 
extent of slowdown measured in terms of reduction in speed was consistently 
underestimated as evidence by SEB measurements as well as by the distribution analysis.  
Even for events classified as fully captured, any error in the extent of slowdown was 
biased toward faster speeds.  This systematic bias towards higher speeds will have 
programmatic significance if probe data is used in long term performance monitoring.  As 
probe data quality improves, the data will more accurately report the full extent of 
slowdowns.  As a result congestion may appear to grow worse when in actuality, it is 
only the quality of the probe data that is improving.  This scenario has been corroborated 
by early adopters of probe data for arterial performance measures. 

• Whenever traffic progresses at two distinct travel times or speeds as a result of 
signal operation, probe data invariably reports the faster of the two modes.  This 
issue, sometimes termed ‘optimistic bias in the presence of bi-modal flow’, was 
independent of geometric attributes, and evident whenever bi-modal flow was 
encountered.  Over the entire course of the validation there were only a handful of 
exceptions during which the probe data was able to successfully report a speed that was 
between the two modes.  This behavior was evident in both the traditional plots as well as 
the 24-hour overlay plots. 

• Complex flow patterns common on signalized roadways cannot be observed in VPP 
data.  Bi-modal flow induced by signal operations is one example of complex flow.  
Other examples include large variation in speed due to multi-cycle failures, significant 
mid-block friction due to high density of access points and curb cuts, and changes in 
vehicle flow patterns due to signal timing changes.  Because current probe data feeds 
report only an average speed, no information on the variation of speed is available.   
Complex flows were not captured either with the traditional data plots, or with the 24-
hour overlay plots.   

 

This validation effort on signal controlled arterial roadways was the most expansive to date and 
resulted in several findings related to appropriate validation methodology.  Future arterial 
validation efforts (as well as future work on arterial performance measures) should consider the 
following issues.   

• The Slowdown Analysis provides the most insight into VPP data’s ability to 
accurately capture traffic conditions.  Although the process is currently based on 
expert review of data as opposed to a systematic statistical computer compilation (similar 
to AASE and SEB), the results of the slowdown analysis provided the most intuitive and 
usable feedback on the fidelity of probe data.  Once the slowdown analysis indicated that 
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probe data could adequately reflect disruptions in traffic flow, the traditional analysis and 
distribution analysis could begin to quantify the degree of fidelity.   This methodology, 
currently in its infancy, should be formalized moving forward in collaboration with 
industry. 

• Traditional Analysis methods for measuring precision and bias (using AASE and 
SEB) should be assessed against the mean, not the standard error of the mean 
(SEM) band.  The SEM band, which was introduced to account for uncertainty in 
freeway reference data, masks the true performance of arterial probe data due to the high 
levels of speed variation inherent in arterial traffic flow.  

• Distribution analyzes provides a fundamentally better perspective to observe 
repeatable traffic conditions.  Overlay plots enhance repeatable traffic patterns, and the 
corresponding percentile-based cumulative frequency diagrams (CFDs) provide valuable 
visual perspective and tabular data for objective measurements.  These procedures are 
capable of producing existing roadway performance measures, and can serve as a robust 
basis to compare the full breadth of performance, rather than a select metric.  The 
distribution analysis should be continued in future validation, and considered further as 
the basis for standard arterial performance measure tools. 

 

As a result of the findings of this study, the following recommendations are made to the I-95 
Corridor Coalition and its members. 

• The I-95 Corridor Coalition should continue to monitor outsourced probe data 
fidelity on arterials as part of the VPPII initiative.  Probe data quality is anticipated to 
improve as probe data density increases, and algorithms allowing for point pairing 
improve.  Validation of multi-vendor probe data available in VPPII will continue to 
benchmark industry capability moving forward. 

• Future work on arterial performance measures and probe data validation on 
arterials should build on the methodologies established in this report.  Freeway 
measures and methods are inadequate on arterials.   Future efforts should engage the 
traffic engineering community along with planning and operations to merge current work 
on arterial management with probe data measures. 

• The Coalition should engage probe data providers and industry researchers to 
explore and prototype new data items capable of fully characterizing the complex 
arterial travel patterns including resulting from signal control.  At the base of this 
discussion are issues related to ‘what should be reported in addition to mean speed?’.  
Current practice of mean speed measurements alone fail to capture the dynamics of 
arterial traffic flow.   

 

The I-95 Corridor Coalition’s Vehicle Probe Project continues to lead the country as the 
epicenter for probe-based operations and planning performance measures.  The unique nature of 
a common licensing agreement combined with common data formats and analysis tools provides 
the best foundation to continue to advance arterial performance measure practice from a multi-
state, industry and research collaborative environment.   
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