Volume & Turning Movements Project

Steering Committee Meeting #8

August 18, 2018

Conference call number: 1-719-867-1571 and enter 725437# at the prompt

I-95 Corridor Coalition > Volume & Turning Movements Project > www.i95coalition.org

Housekeeping Items

- Please call 484-557-7009 for difficulties with the web or audio application
- This is a virtual meeting experience
 - Please keep your phone muted until asking a question or speaking (press *6 to mute/unmute individual phone lines)
 - Please do not place call "on hold" as your hold music will be heard by the group
- Speakers will answer questions at the end of their presentation
- The audio from this meeting is being recorded
- All materials & contact information will be available to participants after the webcast

Attendees

Agencies and Organizations

Colorado DOT	New Hampshire DOT
District DOT	North Carolina DOT
Durham MPO (NC)	North Jersey Transportation Planning Authority
FHWA	NREL
Florida DOT	Pennsylvania DOT
Georgia DOT	Port Authority NY & NJ
HERE	StreetLight Data
I-95 Corridor Coalition	Texas A&M Transportation Institute
INRIX	TomTom
Kentucky Transportation Center	UMD CATT
MWCOG	Virginia DOT

I-95 Corridor Coalition > Volume & Turning Movements Project

Speakers

Denise Markow, PE TSMO Director I-95 Corridor Coalition dmarkow@i95coalition.org

Stanley Young, PhD, PE National Renewable Energy Laboratory (NREL) Stanley.young@nrel.gov

Kaveh Sadabadi, PhD Center for Advanced Transportation Technology - University of Md. (UMD CATT) kfarokhi@umd.edu

Zachary Vander Laan Center for Advanced Transportation Technology - University of Md. (UMD CATT) zvanderl@umd.edu

Please confirm that your line is muted *6

Thank you!

I-95 Corridor Coalition > Volume & Turning Movements Project

August 16, 2018

Agenda

	Торіс	Speaker
1	Welcome & Project Status Update	Denise Markow, I-95 Corridor Coalition Stan Young, NREL
2	Traffic Volume Estimation using GPS Traces: Florida and New Hampshire Update	Kaveh Sadabadi, UMD CATT Zach Vander Laan, UMD CATT
3	Insights from VTM Error Analysis	Stan Young, NREL
4	Future Work - Next Steps & Wrap Up	Stan Young, NREL Denise Markow, I-95 Corridor Coalition

Why Do We Need More and Better Volume Data?

- Operations
 - Detect real-time traffic volume in the network
 - Traffic volume during inclement weather and special events

Planning

Operations

- Assess user costs
- Utilization of existing capacity
- Economic and energy assessment
 - Estimate economic impact of congestion
 - Quantify VMT and energy use

Ubiquitous Traffic Volumes

I-95 Corridor Coalition > Volume & Turning Movements Project

August 16, 2018

Proposed Solution

How Good is Good Enough?

 Mean Absolute Percentage Error (MAPE)
 Volume dependent - estimate
 10-15% High Volume
 20-25% Mid Volume
 30-50% Low Volume (Mean Absolute Error may be appropriate)
 R^2 Coefficient of Determination

 >70% good
 >80% better
 >90% best

Highway Operations

• Error to Capacity (ETCR) or Max Flow (EMFR)

- < 10% becomes useful < 5% is target
- {For highway operations, reflective of capacity constraint situations}

MAPE is Volume Dependent!

Acceptable % Change						
AADT Range Decreasing (-) Increasing (+)						
0 -19	-100%	400%				
20 - 49	-40%	50%				
50 - 99	-30%	40%				
100 - 299	-25%	30%				
300 - 999	-20%	25%				
1,000 - 4,999	-15%	20%				
5,000 - 49,999	-10%	15%				
50,000+	-10%	10%				

MNDOT Example

Traffic Volume Estimation Using GPS Traces: Florida and New Hampshire Update

Analysis Performed by: **Przemyslaw Sekula and Zachary Vander Laan**

Presented by: Kaveh Farokhi Sadabadi and Zachary Vander Laan

VTM Steering Committee Meeting August 16, 2018

Presentation Outline

- Overview
 - Objectives
 - Volume estimation approach
- Florida case study
 - Dataset
 - Results
 - Statewide estimates
 - AADT/AAWDT
 - Truck Volumes
 - Flagging unusual behavior

- New Hampshire case study
 - Dataset
 - Results
 - Statewide estimates
 - AADT/AAWDT
 - Model transferability

- Summary / Next Steps
- Q & A

Objectives

- Given the following:
 - Probe volumes (processed from GPS traces of a subset of vehicles),
 - Other archived data (speeds, road geometry, weather, etc.)
 - Continuous count data from select locations
- Can we build a model to accurately estimate statewide volumes?

Volume Estimation: General Approach

Develop and Train Model

- <u>Where</u>? TMC segments associated with continuous count stations
- <u>How</u>? Construct machine learning model to learn relation between input variables and continuous count volumes

Apply model to state road network

- <u>Where</u>? All TMCs on road network
- <u>How</u>? Apply trained model to input variables from any TMC segment on the network

Florida Dataset (Q4 2016)

Data needed at all TMCs

- GPS probe data (INRIX)
 - 75M trips, 3.4B pts
 - Penetration rate: 2.1% median
 - Snapped to base map
- Probe speeds (HERE)
- Road characteristics
 - # lanes, speed limit, facility type, etc.
- Weather
- TTI hourly volume estimates

- 1: cars / light-duty trucks
- 2: medium-duty trucks
- **3**: heavy-duty trucks

Data needed only at continuous count stations

- Ground truth count data (FDOT)
 - Used for model training / evaluation
 - Used to estimate probe penetration rate

Florida Model Evaluation

- Model: "Dense" Artificial Neural Network (ANN)
- Cross validation (repeat 173 times)
 - Train model using data from 172 of 173 continuous count stations
 - Generate model predictions using data from remaining station

<u>Evaluation</u>: Compare estimates with actual volumes & generate metrics

August 16, 2018

Florida Results: Summary

\rightarrow Overall median error metrics:

- R2 = 0.83
- MAPE = 25%
- EMFR = 7%

Summary

Promising model performance, even over a variety of scenarios

Observations

- \uparrow Road class = \uparrow Accuracy
- \uparrow Avg. hourly volume = \uparrow Accuracy
- \uparrow Avg. hourly GPS counts = \uparrow Accuracy

Median Error Metrics by Scenario

Road Classification	R2	MAPE (%)	EMFR (%)	Obs
	0.86	21	6	105704
FNG I (Interstates)	0.00	21	0	195704
Maryland (mostly FRC 1)	0.86	23	7	158040
FRC 2 (Other Freeways & Expressways)	0.82	26	7	370567
FRC 3 & 4 (Other principal & minor arterials)	0.83	33	7	128419
Hourly Volume (vph)	R2	MAPE (%)	EMFR (%)	Obs
0-1k	0.81	29	7	465591
1k-2k	0.86	22	6	164465
2k-3k	0.88	18	6	49221
3k+	0.87	19	6	15413
Avg probe counts / hr	R2	MAPE (%)	EMFR (%)	Obs
"Low" [0-6]	0.78	38	8	214557
"Medium" [6-17]	0.84	24	7	249730
"High" [17-145]	0.85	22	6	230403
° с атт 🚺				

Florida Statewide Model

- Apply trained model to entire road network
 - Requires 3 months of hourly input data at ~20k TMCs
 - Generate hourly volume estimates at each input time/location

Florida Statewide Model: Tampa Bay Area

Continuous count station selected that exhibits typical (median) model performance

Traffic volume

Florida: AADT & AAWDT Estimation

AADT

Florida: Freight Volume Estimation

 \rightarrow Apply model to estimate hourly freight volumes

Leverage highly-granular FDOT continuous count data

→ Initial freight volume results look promising, particularly on higher functional road classes

shutterstock.com · 418741906

Heavy Trucks

FHWA Class 5-13	R ²	MAPE (%)
Overall	0.77	38
FRC 1	0.83	24
FRC 2	0.76	42
FRC 3 & 4	0.65	49

All Trucks

FHWA Class 7-13	R ²	MAPE (%)
Overall	0.66	44
FRC 1	0.80	26
FRC 2	0.62	49
FRC 3 & 4	0.38	54

* Median error metrics

Florida: Flagging Unusual Behavior

Goal: Develop flags to highlight unusual input data and output model estimates

- Flag 1 based on <u>GPS input data (key model "ingredient")</u>
 - Typical: Observed GPS counts within X std. dev of mean GPS counts during same day of week and hour
 - Low: Less than Typical range
 - High: Greater than Typical range
- Flag 2 based on output model estimates
 - *Typical*: Observed hourly estimates within X std. dev of mean estimates during same day of week and hour
 - Low: Less than Typical range
 - High: Greater than Typical range

New Hampshire Dataset (Q3 2017)

Data needed at all TMCs

- GPS probe data (INRIX)
 - 7M trips, 595M waypoints
 - Penetration rate: 2.3% median
 - Snapped to base map
- Probe speeds (RITIS, various vendors)
- Road characteristics
 - # lanes, speed limit, facility type, etc.
- Weather
- TTI hourly volume estimates (Optional)

- 1: cars / light-duty trucks
- 2: medium-duty trucks
- 3: heavy-duty trucks

Corresponding Florida dataset (Q4 2016)

- GPS probe data (INRIX)
 - 75M trips, 3.4B waypoints
 - Penetration rate: 2.1% median
 - Snapped to base map

New Hampshire: Model Comparisons

Model	R2	MAPE	EMFR
Florida	0.77	34%	8%
Base (trained on NH data only)	0.83	28%	7%
Transfer Learning (FL model fine tuned w/ NH data)	0.83	24%	7%
Extended (trained on NH and FL data combined)	0.84	27%	7%

New Hampshire Results: Summary

Median Error Metrics by Scenario

\rightarrow Overall median error metrics:

- R2 = 0.84
- MAPE = 27%
- EMFR = 7%

Summary

Promising model performance, even over a variety of scenarios

Observations

- \uparrow Road class = \uparrow Accuracy
- \uparrow Avg. hourly volume = \uparrow Accuracy
- \uparrow Avg. hourly GPS counts = \uparrow Accuracy

Road Classification	R2	MAPE (%)	EMFR (%)	Obs
FRC 1 (Interstates)	0.84	21	7	65,728
FRC 2 (Other Freeways & Expressways)	0.83	30	7	84,307
FRC 3 & 4 (Other principal & minor arterials)	0.86	29	7	25,369

Hourly Volume (vph)	R2	MAPE (%)	EMFR (%)	Obs
0-1k	0.84	30	7	38,771
1k-2k	0.86	20	8	10,394
2k-3k	0.86	18	7	65,728

Avg probe counts / hr	R2	MAPE (%)	EMFR (%)	Obs
Low [0-5]	0.81	32	7	60,182
Medium [6-17]	0.85	25	7	57,524
High [17-145]	0.86	21	6	57,698

New Hampshire Statewide Model

- Apply trained model to entire road network
 - Requires 3 months of hourly input data at ~2k TMCs
 - Generate hourly volume estimates at each input time/location

New Hampshire: AADT & AAWDT Estimation

August 16, 2018

Experiments with Training Dataset

- When Florida dataset is combined with only 2 weeks of New Hampshire data for training, model predictions are reasonably good!
- Over time, only small amount of data for each new geography is needed to create powerful models!
- Potentially, the statewide traffic count data collection (and its associated cost) can be optimized!

		F	R ²		MAPE	
		2 w.	3 mo.	2 w.	3 mo.	
Base	mean	0.38	0.72	54.9	43.4	
	median	0.77	0.83	34.3	27.5	
Extended	mean	0.76	0.80	35.9	33.7	
	median	0.81	0.84	27.8	27.3	

Summary & Next Steps

<u>Summary</u>

- Analysis on Florida and New Hampshire datasets are complete
- Hourly volume estimates:
 - Estimates meet requirements for most planning and operational purposes
 - Estimation quality improves with road class and actual volumes (number of probes)
 - Developed sensible flags to identify unusual behavior of input to and output from the models
- AADT and AAWDT estimates:
 - High level of accuracy
 - Consistent with expectations along major highways and urban areas
- Freight volumes
 - Initial results are promising, especially on FRC1 roads
- Model and data transferability
 - It is possible to leverage larger datasets in developing models for smaller geographies

Contact Information

Kaveh Farokhi Sadabadi (PI) kfarokhi@umd.edu

Przemyslaw Sekula psekula@umd.edu

Zachary Vander Laan zvanderl@umd.edu

NREL Insights from VTM Error Analysis

August 16, 2018

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Volume Error Analysis Colorado Roadways both Freeways and Off-freeways

(a) Symmetric MAPE (b) Training Bounds & Data Filtering (c) Performance during unusual events

August 2018 National Renewable Energy Lab Yi Hou, Venu Garikapati, Stan Young

- Issues with Mean Absolute Percentage Error (MAPE)
 - Inflates error at small observed values and can not be used if there are zero values
 - No upper limit to the percentage error can go to infinity
 - Anything averaged with infinity is infinity
- Symmetric MAPE
 - $\circ~$ Overcomes the issues with MAPE
 - $\circ~$ Provide a result between 0% to 200%

$$SMAPE = \frac{100\%}{N} \sum_{t=1}^{N} \frac{|V_i - \hat{V}_i|}{(|V_i| + |\hat{V}_i|)/2}$$
$$MAPE = \frac{100\%}{N} \sum_{i=1}^{N} \frac{|V_i - \hat{V}_i|}{|V_i|}$$

Model Results – Colorado Freeway

- Results exceed the survey expectation: ETCR<10%
- All have very similar accuracy
- XGBoost is the most computational efficient

Model	MAPE	SMAPE	ETCR	R2	Training Time
RF	17.8%	16.6%	5.2%	0.92	73s
GBM	18.3%	17.4%	4.8%	0.93	124s
XGBoost	17.7%	17.2%	5.3%	0.91	13s

Model Results Comparison – Colorado Off-Freeways

Much more accurate than linear regression and AADT based methods

Model	MAPE*	SMAPE	MAE	EMFR	R2
XGBoost	50.6%	34.0%	89.2	13.2%	0.88
Linear	314.7%	68.1%	153.1	29.5%	0.80
AADT Based Method	161.7%	76.0%	304.4	26.5%	0.16

*The results include extreme low volume

• Further examine MAPE and EMFR for volume > 20 vehs/hr

Model	MAPE (Vol>20)	SMAPE (Vol>20)	EMFR (Vol>20)	
XGBoost	29.7%	27.4%	10.8%	
Linear Regression	90.4%	50.4%	20.5%	
AADT Based Method	124.9%	63.8%	28.1%	

• Need to look at accuracy in volume ranges

Volume Error Analysis Colorado Roadways both Freeways and Off-freeways

(a) Symmetric MAPE
 (b) Training Bounds & Data Filtering
 (c) Performance during unusual events

Are the large errors at high volumes due to lack of appropriate training data?

MAPE of Different Volume Range – Colorado Freeways

MAPE of Different Volume Range – Colorado Freeways

Residual vs. Probe Count

Residual vs. Probe Count – Colorado Freeways

Residual vs. Probe Count

Residual vs. Probe Count

Data quality

Volume Error Analysis Colorado Roadways both Freeways and Off-freeways

(a) Symmetric MAPE
(b) Training Bounds & Data Filtering
(c) Performance during unusual events
How well does method perform during unusual events and conditions?

Error by Observed Volume Percentile Across Locations

Error by Volume Percentile Across Locations

- Model performs as good as normal conditions when observed volume are above 95th percentile.
- For volumes lower than 5th percentile, MAPE and SMAPE are slightly higher than other conditions.

Percentile of Volume	ΜΑΡΕ	SMAPE	MAE	ECR
0% - 5%	25.5%	20.2%	273.9	4.2%
5% - 50%	18.2%	17.4%	326.7	4.9%
50% - 95%	16.2%	16.6%	385.1	5.7%
95% - 100%	16.3%	17.2%	438.9	6.4%

Error by Standard Deviation Across Locations

Error by Standard Deviation Across Locations

Error by Standard Deviation Across Locations

- SMAPE is consistent for both normal and abnormal conditions, except for two 0.1% tails.
- MAPE is between 15.6% and 22.9% for volumes larger than $\mu\text{-}3\sigma$
- Model performs very well for special events and extremely congested conditions.

Std. of Volume	Count	ΜΑΡΕ	SMAPE	MAE	ECR
<-3 0 (0.1%)	214	42.9%	25.2%	564.5	8.6%
-3σ to -2σ (2.1%)	1694	22.9%	18.4%	276.0	4.4%
-2σ to –σ (13.6%)	5820	20.9%	18.4%	286.8	4.5%
-1σ to 0 (34.1%)	15896	19.1%	18.0%	278.1	4.2%
0 to σ (34.1%)	22234	15.6%	16.4%	428.6	6.3%
σ to 2σ (13.6%)	5390	15.7%	16.4%	398.8	5.8%
2σ to 3σ (2.1%)	743	17.8%	18.6%	243.9	3.7%
> 3σ (0.1%)	101	21.7%	24.8%	340.1	5.1%

Summary and Future Work

- Symmetric MAPE Implemented
- Error Analysis
 - Training bounds issue confirmed at large volumes
 - Input data filtering issue discovered
 - Next steps revised methodology for filtering, flagging and better accuracy
- Working towards confidence flag / number & identifying information importance

Future Work – Next Steps

• Status of VTM R&D

 $_{\odot}~$ In the homestretch – anticipate closeout end of 2018

 $_{\odot}\,$ Small additional research funding extended effort

• Extended work

o NREL & UMD

- Continued Metric / Error Analysis / Confidence

 \circ NREL Focus

- Analyze additional Coalition state
- \circ UMD Focus
 - Truck Volumes and vehicle types analysis

• Recall

- Original VPP Single vendor, travel times
- $_{\odot}\,$ VPP 2.0 Travel time and speeds
 - Multiple vendor
 - Ancillary products (maps, trace data, etc.)
- Preparing VPP 3.0 (everything in VPP 2.0)
 - Include volume estimates
 - Other emerging capabilities OD & trace data
- Recommended specs for volume estimates in VPP 3.0 is product/deliverable in VTM research

- Results of call for interest to go 'from Lab to the Streets'
 - $_{\odot}\,$ Discussion with several states
 - FL, GA, MD, PA, NH, CO, AL, PANYNJ and others
 - Vendors are responding with custom data packages/services to support volume estimates
- USDOT/FHWA Pooled fund study
 - $_{\odot}\,$ New sources of volume data for HPMS
- Other
- Contact Denise, Stan, or Kaveh if interested

Final Questions

Thank You!

For Questions, please contact:

- PI Kaveh Sadabadi (UMD-CATT) 301-405-1352 or kfarokhi@umd.edu
- Co-PI Denise Markow (I-95 Corridor Coalition) 301-789-9088 or <u>dmarkow@i95coalition.org</u>
- Co-PI Stanley Young (NREL) 301-792-8180 or <u>Stanley.Young@nrel.gov</u>
- Logistics –Justin Ferri (KMJ Consulting, Inc.) 610.228.0759 or jferri@kmjinc.com

