Measuring Supply Chains for Freight Fluidity From a Corridor Perspective

Reflections from I-95 Corridor Coalition Freight Fluidity Measures Pilot Project

TRB Workshop - Advancing Freight Fluidity Performance Measures

Marygrace Parker, I-95 Corridor Coalition

December, 2015

Project Background

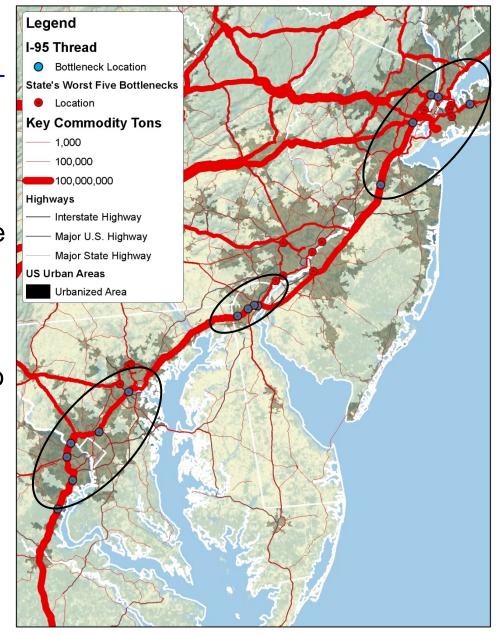
• Objective

- Demonstrate and improve the measurement of freight transportation performance using a supply chain perspective
- End to end conception of performance and measurement, across modes and stages

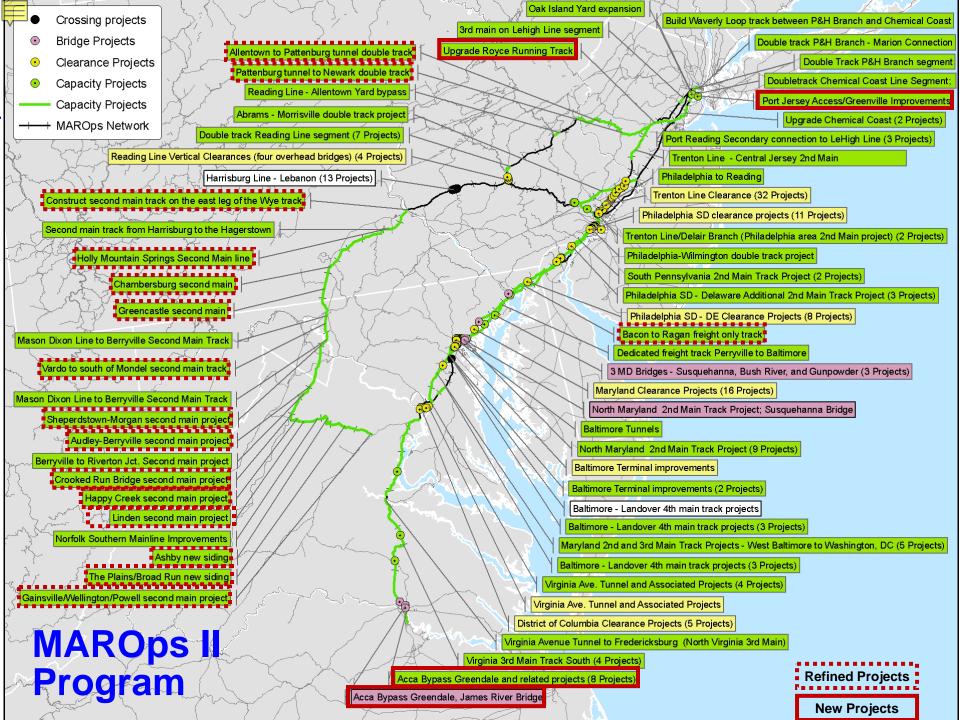
Case Study Sponsors


- I-95 Corridor Coalition, Intermodal Committee
- FHWA, Office of Freight Management
- U.S. Department of Commerce, Advisory Committee on Supply Chain Competitiveness

Why the I-95 Corridor Coalition?


Supply chains and supply chain performance are multi-jurisdictional. So are we:

- 16 states with District of Columbia:
 - \$4.7 trillion economy (40% of US GDP)
 - 21% of nation's road miles; 35% of nation's VMT
 - 5.3 billion tons of freight shipments annually
 - Multimodal corridor
- 2 Canadian Provinces (Quebec, New Brunswick)



Freight Corridors & Bottleneck Strings

- I-95 Trunk Line Bottleneck Strings
 - I-95 New York/New Jerse Bottleneck String
 - I-95 Wilmington Bottleneck String
 - I-95 Baltimore/Washingto Bottleneck String

Freight Corridor Approach for Analysis and Investment

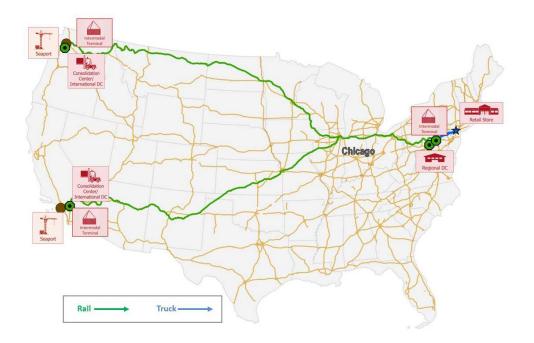
Public contribution to supply chain performance crosses many lines:

- Conditions: urban & rural
- Agencies: MPOs, state, ports, etc.
- Modes & sectors

6

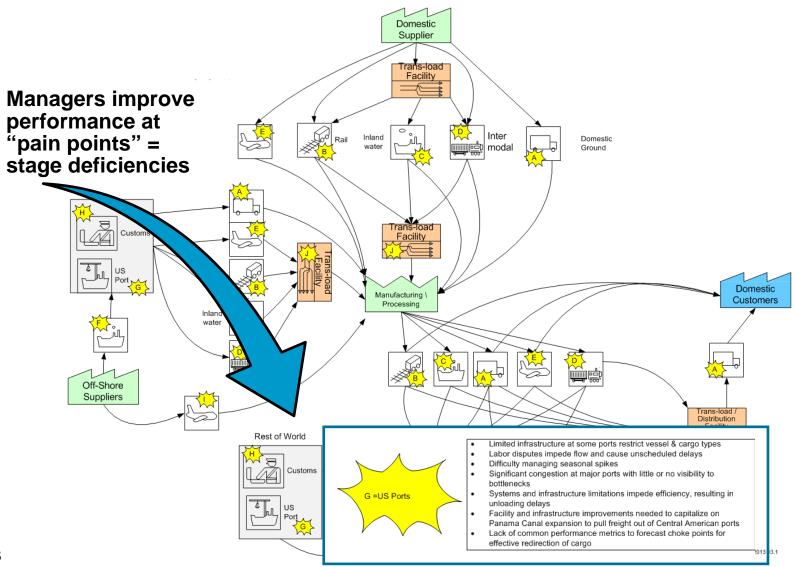
Freight Corridor approach can take advantage of working corridor coalition models that support:

- Multiple players & condition
 - Including Megaregion multijurisdictional economies
- Cooperative performance improvement
- Larger perspective, supply-chain style
- Leveraging data acquisition


Freight Corridor approach suits the emerging environment:

 New Transportation Authorization Legislation (Nationally Significant Freight/Highway Program)

Why Supply Chains



- It's how our freight users do business
- Supply chain performance feeds economic competitiveness
- Performance is endto-end: sum of stages
- Stages put local dynamics in larger perspective: user view, market view

➡ What's our role?

Supply Chains are Complex, but Manageable

Multimodal Supply Chain Case Studies

Autos – General Motors auto parts

- From US and NAFTA suppliers to auto assembly plant in Tennessee

• Retail – Target® consumer goods

 From Ports of Los Angeles/Long Beach and Seattle/Tacoma via Chicago to metropolitan New York

• Electronics – Panasonic electronics

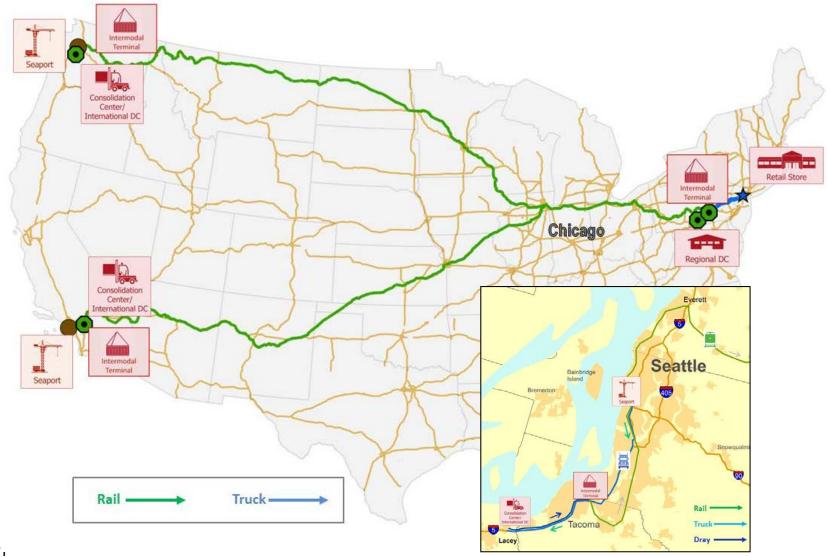
- Between manufacturing and assembly facilities in San Diego and Tijuana

Agriculture – Soybean exports

- From Illinois farms to Louisiana port

Food – Perdue processed chicken

- From DelMarVa region to Mid-Atlantic markets



What Data: Performance Measures and Metrics Market-Driven Factors

Measure	Metric
Transit time	Travel time in days (or hours)
Reliability	95% travel time in days (or hours)
Cost	Dollars
Safety	Fatality and injury rate
Risk	Disruption (storms, labor, infrastructure failure, political forces)
	Capacity expansion delays (physical, regulatory limitations and delays)

Case Example: Retail Supply Chain (Target)

Retail Supply Chain Measures

Seattle to New York

Links and Nodes	Sources	Notes
West Coast port (Seattle)		
Dray move	ATRI, Chainalytics	
Transload or Consolidation Center		
Dray move	ATRI, Chainalytics	
West Coast rail intermodal terminal	TransCore, Chainalytics	
Rail move	TransCore, Chainalytics	
Midwest rail intermodal interchange	TransCore, Chainalytics	
Rail move		Available for purchase
East Coast rail intermodal terminal		Available for purchase
Dray move	ATRI, Chainalytics	
East Coast Regional Distribution Center		
Truck P&D move	ATRI, Chainalytics	
Retail Store		

Retail Supply Chain Performance

Seattle to New York

Links and Nodes	Transit Time/Dwell Time (Hours)	Reliability (95% travel time)	Cost (2014 \$'s)
West Coast port (Seattle)			
Dray move	1.0	1.4	\$299
Transload or Consolidation Center			
Dray move	1.0	2.25	\$308
West Coast rail intermodal terminal	20		
Rail move	104	154	\$3,178
Midwest rail intermodal interchange	71	160	
Rail move			
East Coast rail intermodal terminal			
Dray move	1.1	1.4	\$318
East Coast Regional Distribution Center			
Truck P&D move	6.0	9.5	\$775
Retail Store			
Totals			\$4,878

Estimated using **ATRI data for truck transit times, TransCore data for rail times, Chainalytics data for costs.** Reliability factor for Midwest interchange was produced for sum of West Coast plus Midwest dwell, but most of delay is in Midwest (Chicago)

Sources for Modal Fluidity Data

Measure	Mode	Sources
Transit Time & Reliability	Truck	ATRI, NPMRDS, Google/TTI (& others)
	Rail Intermodal	TransCore (& Railinc)
	Rail Carload	RSI Logistics (& Railinc)
	Waterway	ACE Automatic Identification System
	Port (dwell)	ATRI (some)
Cost	Truck	Chainalytics
	Rail Intermodal	Chainalytics
	Rail Carload	STB Waybill
	Waterway	ACE (partial)

Some things we learned...

Processed Food Supply Chain Performance

Links and Nodes		Transit Time/ Dwell Time (Hours)	Reliability (95% travel time)	Cost (2013)
Production Facility VA	, Accomac,			
Truckload move	1	1.6 hours	1.8 hours	\$580
Consolidation Faci Georgetown, DE	lity,			
Truckload move	2	3.7 hours	4.4 hours	\$886
Distribution Facilit NY	y, Brooklyn,			
	Totals	5.3 hours	6.2 hours	\$1,466
	d'	Regional DC		

Recent research shows 2 things:

- We can understand supply chains, and "know where we are"
- We can measure supply chain performance, and know where to focus

Experience shows 2 things:

- Data reveal symptoms, not diagnosis and treatment
- Solutions are cooperatively created, and multifaceted: investment + operations + visibility + policy

Findings

- We can measure and track the high-level performance of representative supply chains with market-driven metrics
- Key measures and metrics are common across supply chains and can be scaled for national, multistate and metropolitan use
 - Travel time and travel time reliability are available from public and private sources, but "some assembly is required..."
 - Cost data can be purchased from private suppliers, Safety data available / risk data can be estimated, but not readily accessible
- Supply chain performance measurement could have significant benefits to State DOTs and MPOs along the corridor
 - Addressing Freight bottlenecks
 - Targeting Investment
 - Identifying critical supply chain routes /alternative paths for disaster/emergency recovery

Some Recommendations to consider

- Look at representative supply chains serving key industries across a freight corridor
- Work with agencies to determine appropriate performance measures and data granularity needed
 - Level of granularity will differ for industries, supply chains, geographies Need must be determined
- Need to continue to improve state of knowledge and practice related to supply chains, data and performance metrics
- Potential for Model Data Acquisition Contracts on Corridor Basis (i.e. I-95 VPP)
 - Could be effective particularly for Volume O&D, RR and Port data
- Are there projects based on corridors/supply chain applicable to FAST Act "Nationally Significant Projects Program"

In closing ...

- We need to understand supply chains on a corridor basis because supply chains function across multiple jurisdictions and over corridors
- Investment decisions that do not look at the compendium of improvement projects across a freight corridor may leave bottlenecks/disruptions in the supply chain

Marygrace Parker: i95mgp@i95cc.com www.i95coalition.org

Questions? For additional information:

Marygrace Parker: i95mgp@i95cc.com

Joseph Bryan – Parsons Brinckerhoff: BryanJG@pbworld.com

Lance Grenzeback – Cambridge Systematics: Igrenzeback@camsys.com

