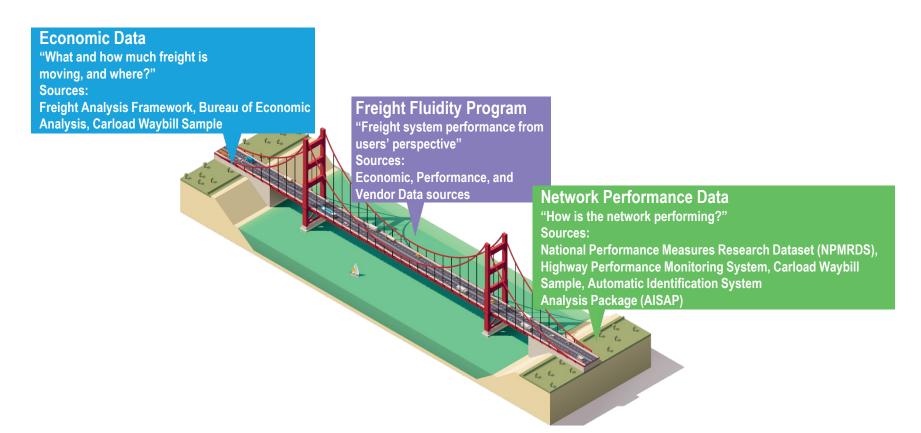
FHWA FREIGHT FLUIDITY PROGRAM

Chandra Bondzie, HOFM/OST

U.S. Department of Transportation

Federal Highway Administration

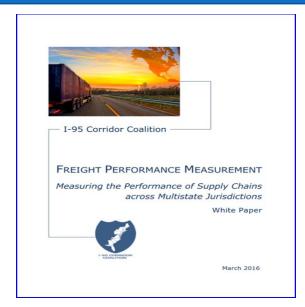
FREIGHT FLUIDITY PROGRAM



- Fluidity is a monitoring program for freight transportation performance in support of the competitiveness and vitality of the nation's supply chains
- Captures for the first time the key performance indicators of <u>travel time</u>, <u>travel time reliability</u>, and <u>customer price</u> for multimodal freight transportation by stage and end-to-end across representative travel lanes in a cross-section of American industry
- Combines two types of data in a robust software platform:
 - Supply chain staging patterns by location and mode (from industry partners)
 - Quarterly performance metrics by lane (from public and commercial sources)
- Lane-level metrics by logistical stage and mode sum to total end-to-end supply chain outcomes, which are the bottom line for competitive industrial performance: <u>actual data</u>, not a model

FLUIDITY BRIDGES AND LEVERAGES EXISTING DATA PROGRAMS

Federal Highway Administration



Fluidity is a bridge between economic and network data, showing how freight flows and facility measures merge into effects on multistage, multimodal industrial performance

BACKGROUND

- Builds on prior FHWA funded research conducted with I-95 Corridor Coalition
 - Question: can we measure supply chain performance across modes and across jurisdictions?
 - Outcome: established that measures and metrics are common across supply chains and can be scaled for national, multistate and metropolitan analysis
- The Fluidity Program is a full feasibility test across multiple modes, 30 industries, and over 400 origindestination moves by truck, water, rail carload and rail intermodal, over four quarters of data

THE PRODUCT

- A new USDOT-owned database of information, with a visualization and mapping tool to record and report three types of performance metrics across multiple modes, scalable to future expansion and enhancement
- A major advance beyond highway-only metrics, allowing us to measure performance from the supply chain perspective and identify critical flows/connections, bottlenecks and improvement opportunities over the larger multimodal system

Current System Performance Capture (Typical)	Freight Fluidity Performance Capture
Travel Time	Travel Time (Industry/Supply Chain)
Travel Time Reliability	Travel Time Reliability (Industry/Supply Chain)
Cost of Wasted Time and Fuel	Transportation Cost (Market Price, Industry/Supply Chain)
Highway Only	Multimodal: Highway, Rail (IMX & Carload), Water

DATA – SUPPLY CHAIN DEFINITION

- 30 major US companies identified to represent a broad cross-spectrum of industry sectors, commodities, modes
 - 24 at national level, 6 regionally focused on NY/NJ and Chicago areas
 - Through interviews, industries shared "wiring diagrams" of their most critical supply chains, without revealing other business-sensitive information

Contribution to national GDP and projected growth among freight-dependent industries

Geographic coverage of US: regions, urban centers, rural areas, gateways, corridors, direction of travel

Contribution to regional GDP and projected growth among freight-dependent industries

Industry importance to resilience of other supply chains and of population

Industry importance in US trade

Modal and travel distance diversity

DATA – PERFORMANCE METRICS

- Customer prices
 - Truck and Rail Intermodal price data purchased from commercial aggregator
 - Rail Carload price data estimated by consultant team from STB Waybill
- Travel time (with Reliability measured as variations in travel time)
 - Water data provided by US Army Corps of Engineers AIS, with detailed analysis by the Bureau of Transportation Statistics – 25%, 50%, 75% percentiles
 - Rail carload and intermodal travel time data purchased from commercial aggregator – 50% and 95% percentiles -- some routes not available
 - Truck data developed through analysis of FHWA's NPMRDS
 - FHWA acquired first NPMRDS in July 2013, second version in April 2017; see https://ops.fhwa.dot.gov/perf_measurement/index.htm
 - Aggregates observed travel times from vehicle-based probes on Traffic Message Channels (TMCs) over five minute intervals, continuously, for freight and passenger vehicles

DATA – NPMRDS ANALYSIS

- Line up road segments (TMCs) from origin to destination zip codes using NPMRDS roadway inventory and fastest paths
- 2. Using this virtual routing, calculate travel times for a trip starting every 15 minutes throughout a quarter ("traces") based on TMC speed data
- 3. Record the time it takes to travel the route for each starting time and day in the quarter; calculate free flow, mean, 50%, 95%, and 99% travel times averaged over the full quarter
- 4. Limitations: not all routes or segments of interest covered by NPMRDS, other sources of speed data would be needed to fill in gaps; but the great majority of truck route mileage is covered

Origin

Leave Day 1 at 00:00

Origin

Destination

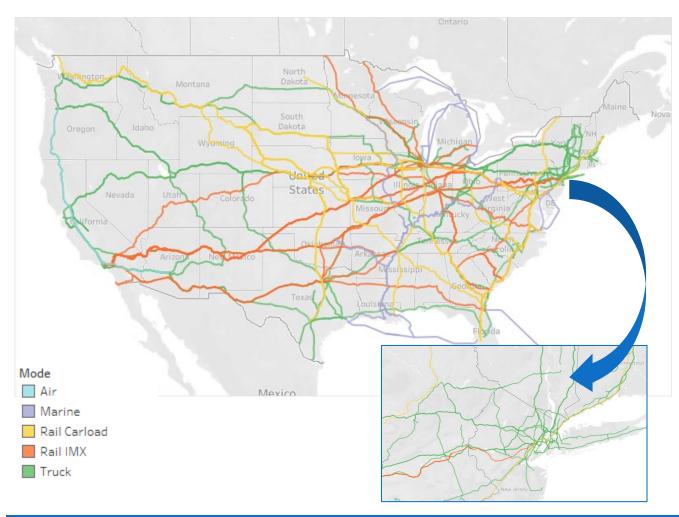
Destination

Destination

Arrive Day 1 at 01:12

Arrive Day 1 at 01:22

SOFTWARE PLATFORMS

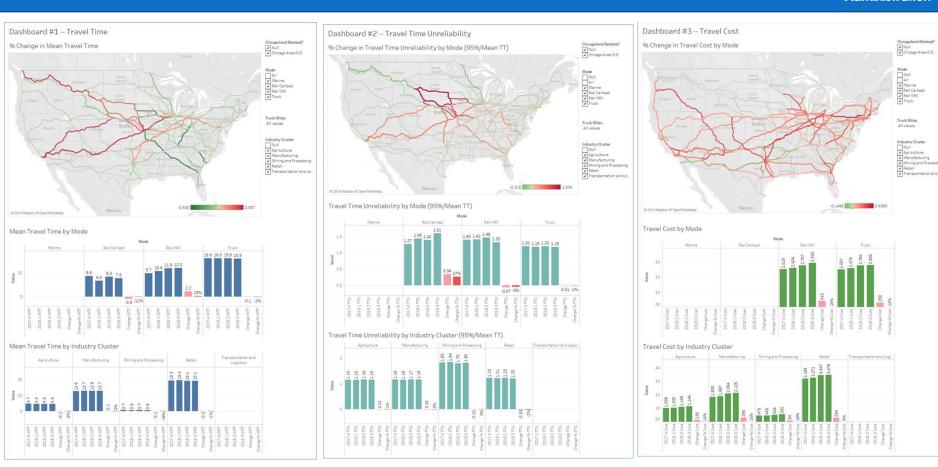

- Two integrated platforms, both from existing suite of FHWA freight measurement tools:
 - Excel database and Tableau data analysis/visualization

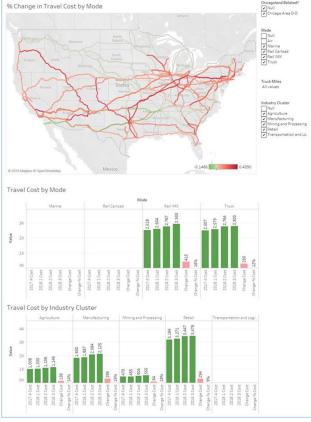
- FHWA/HOFM GIS data visualization tools, fed from database
- The software platforms meet key criteria:
 - Ability to hold and process large data sets in time series
 - Accessibility of data to internal and external users, via export into common formats such as spreadsheet software, and directly on the platform without purchase of special tools.
 - Ability to restrict access to certain types or levels of data
 - Varied and high quality graphical and cartographical displays
 - Stability as dependable, tested tools
- Open-ended to support additional industries, travel lanes, modal details, data periods, performance calculations – <u>maintainable</u>, <u>expandable</u>

MODE/ GEOGRAPHY COVERAGE

- Each data record has an assigned path – NHS segment, rail network, waterway network -- allows any data attribute or value to be displayed at a path level
- Captures moves in almost every state, most major metro areas, much of the national highway freight network -even from the limited 30 industry sample

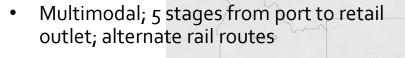
INDUSTRY COVERAGE





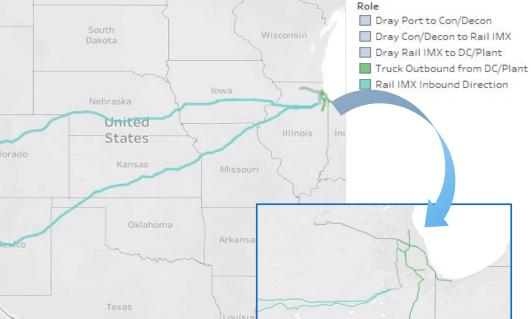
⇒ 30 Industries: 14 Manufacturing, 8 Retail, 4 Mining, 2 Agricultural Production (in addition to food manufacturing), 2 Transportation/Logistics

SYSTEM-LEVEL ANALYSIS



Dashboards for Travel Time, Unreliability, and Price by path, mode, and industry cluster; maps showing each quarter or changes; charts showing quarterly data; can filter by mode, industry, geography, etc.

SUPPLY CHAIN-LEVEL ANALYSIS



Industry Example: Home Improvement

Half the cost is for four drayage stages of less than 250 miles total

Import stage reliability worse than delivery stage reliability

	Port to	Crossdock to Rail	Rail	Rail Terminal	DC to Retail	
	Crossdock	Terminal	Linehaul	to DC	Outlet	TOTAL
	Truck	Truck	Rail IMX	Truck	Truck	
Miles	6	25	2200	109	103	2443
2017.4 Total Cost per Unit (\$)	489	526	2616	699	692	5022
2017.4 Linehaul Cost per Unit (\$)	487	518	2298	659	653	4615
2017.4 Fuel Cost per Unit (\$)	2	8	319	40	38	407
2017.4 Mean Truck Travel Time (hrs)	0.3	0.7		1.9	1.8	4.7
2017.4 Cross Modal Reliability (95%/50%)	1.5	1.6		1.1	1.3	

STATEWIDE ANALYSIS

© 2019 Mapbox © OpenStreetMap

State Example: Missouri

PRODUCT VALUE

Public Agencies (Federal, State, MPO/Regional)

- Monitor Key Performance Indicators (KPIs), comparable to how freight system users monitor themselves, capturing critical factors for industry competitiveness
 - Supports economic development strategies by identifying transportation connections relied on by essential industries
 - Supports timely response to questions about supply chain disruptions, resiliency and redundancy, alternative service options for major industries, last mile connectivity, and other freight transportation issues
 - Provides working tool that complements and combines with others in the public agency toolbox
 - National platform supplies foundation for state and local agencies to build upon

Private Sector

 Potential resource to provide benchmarking data to smaller/rural industries without access to this information

NEXT STEPS

- Complete data validation and documentation
- FHWA launches Freight Fluidity Supply Chain Monitoring tool as part of suite of Freight Data Tools in 2020
 - Provides report on Project and User Guide on Data Tool
- Conduct continued outreach to state DOTs, MPOs and others to create awareness of tool and capabilities
 - Through TRB, AASHTO, AMPO event presentations in 2020
- FHWA HOFM examines adding additional capabilities in tool
 - Additional quarters, industry sectors, applications

MORE INFORMATION

Contact Information

Chandra Bondzie, FHWA HOFM Chandra.Bondzie@dot.gov 202-366-9083