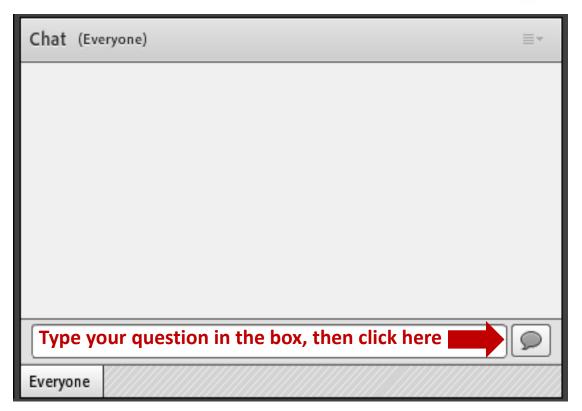
I-95 Corridor Coalition

Webinar on Accurate Estimates of Traffic Volume - anywhere, anytime - from GPS Probe Samples

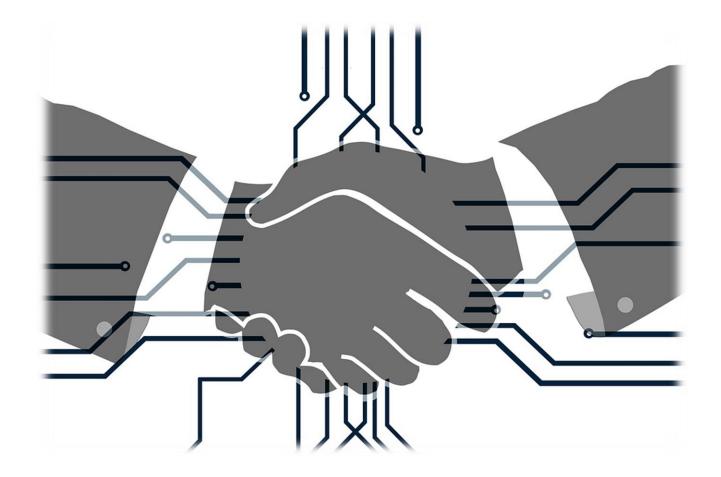
May 23, 2018

Webinar & Audio Information

- The call-in phone number is: xxx-xxx-xxxx & enter xxxxxxxx# at the prompt
- Participants will be in "Listen Only" mode throughout the webinar
- Please press *0 to speak to an operator for questions regarding audio
- Please call xxx-xxx-xxxx for difficulties with the web or audio application
- This webinar will be recorded
- Presentations will be posted to the I-95 Corridor Coalition website.


 Participants will receive a link to the presentations after they are posted.

Asking Questions



- Please pose your questions using the chat box
- Questions will be monitored then answered by the speakers at the end of the webinar

Welcome

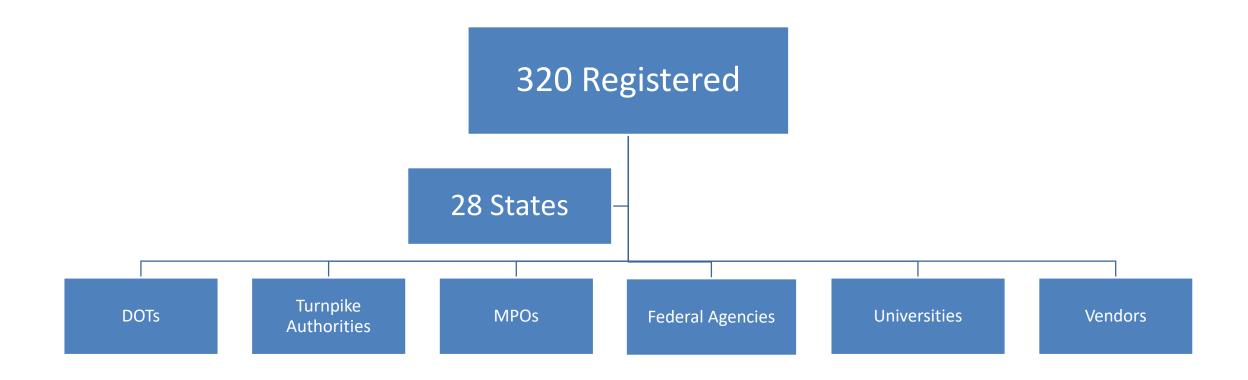
Who is the I-95 Corridor Coalition?

16 States and the District of Columbia


• 35% of nation's VMT (21% of road miles)

• 565 million long-distance (>100 miles) trips annually

Corridor = third largest economy in world


How can we better message TSMO strategies Regionally?

...a partnership of multi-state, multi-modal public agencies working together to create a seamless and efficient transportation system

I-95 Corridor Coalition Sponsored Event

Speakers

Denise Markow, PE
TSMO Director
I-95 Corridor Coalition
dmarkow@i95coalition.org

Stanley Young, PhD, PE
National Renewable Energy
Laboratory
(NREL)
Stanley.young@nrel.gov

Kaveh Farokhi Sadabadi, PhD
Center for Advanced Transportation
Technology - University of Md.
(UMD CATT)
kfarokhi@umd.edu

Yi Hou, PhD
National Renewable Energy
Laboratory (NREL)
yi.hou@nrel.gov

Outline

Introduction – Stan Young

Results from University of Maryland – Kaveh Sadabadi

Results on Colorado Roadways – Yi Hou

Summary and Discussion – Stan Young

Project Goal

Accelerate the timeframe to a viable volume and turning movement data feed ---

- Anywhere/anytime on the network
- Archive and real-time
- Freeway and Non-Freeway

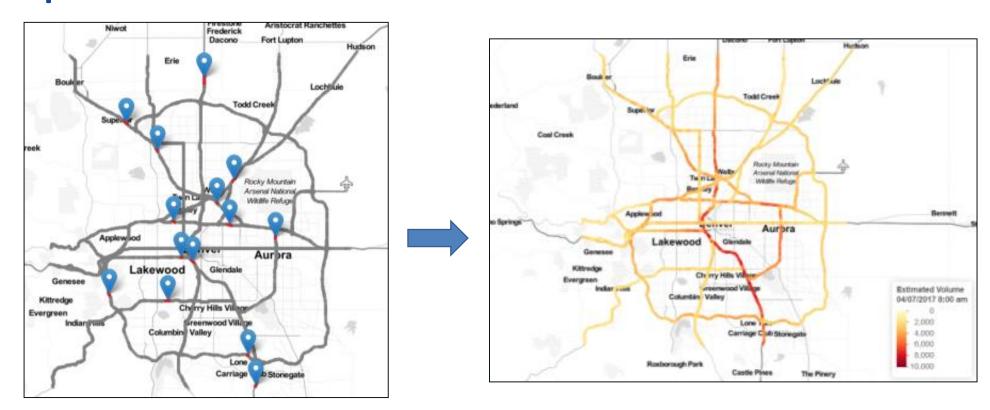
Ensure that initial data products meet members' information needs for operations, performance measurement, and planning.

Why Do We Need More and Better Volume Data?

Operation

- Detect real-time traffic volume in the network
- Traffic volume during inclement weather and special events

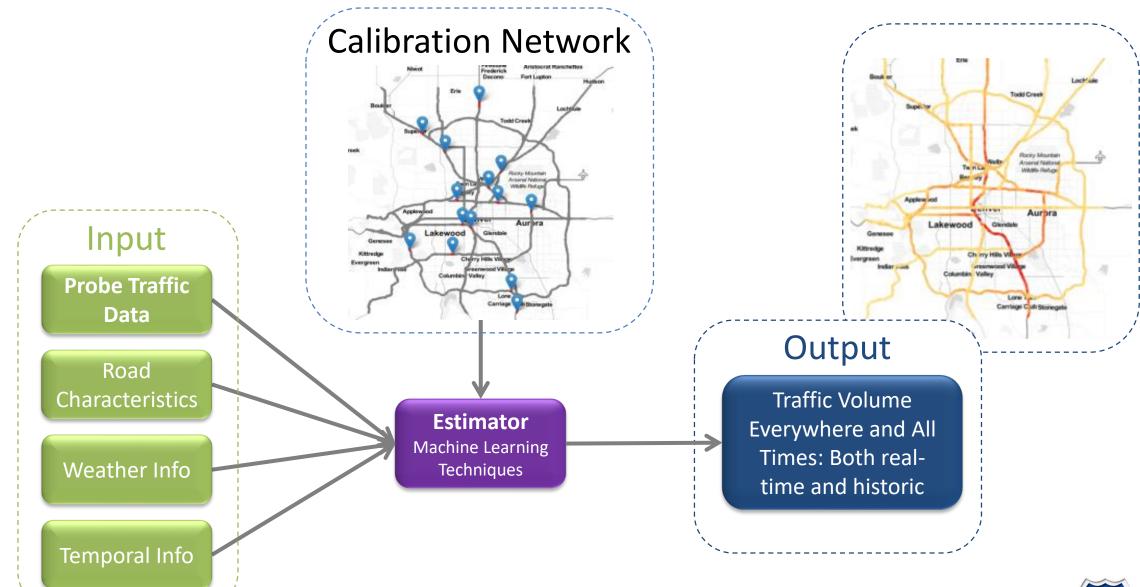
Performance measure


- Assess user costs
- Utilization of existing capacity

Economic and energy assessment

- Estimate economic impact of congestion
- Quantify VMT and energy use

Ubiquitous Traffic Volumes


Ubiquitous network observability

• Ideal but expensive to achieve with sensors

Best alternative

• Utilize and fuse existing high-quality yet sparse data with probe data to predict traffic volumes on each and every link of the road network

Proposed Solution

Standard Error Measures

• Mean Absolute Percentage Error: MAPE $=\frac{1}{N}\sum_{i=1}^{N}\frac{|V_i-\widehat{V_i}|}{|V_i|}$

Traffic Engineer

- Reflects the absolute volume accuracy
- Error to Theoretical Capacity Ratio: ETCR = $\frac{1}{N}\sum_{i=1}^{N} \frac{|V_i \widehat{V_i}|}{C_i}$

Highway Operations

- Reflects fidelity with respect to capacity
- Coefficient of Determination:
 - Explanatory power of model

$$R^2 = 1 - \frac{(\widehat{V_i} - V_i)^2}{(V_i - \overline{V})^2}$$

Statistician/ Planner

How Good is Good Enough?

- Error to Capacity (ETCR) or Max Flow (EMFR)
 - < 10% becomes useful < 5% is target
- Mean Absolute Percentage Error (MAPE)
 Volume dependent estimate
 - 10-15% High Volume
 - 20-25% Mid Volume
 - 30-50% Low Volume (Mean Absolute Error may be appropriate)
- R^2 Coefficient of Determination >70% good >80% better >90% best

Acceptable % Change

AADT Range	Decreasing (-)	Increasing (+)
0 -19	-100%	400%
20 - 49	-40%	50%
50 - 99	-30%	40%
100 - 299	-25%	30%
300 - 999	-20%	25%
1,000 - 4,999	-15%	20%
5,000 - 49,999	-10%	15%
50,000+	-10%	10%

MNDOT Example

Estimation vs. Observation (Median \mathbb{R}^2)

Framework, Details of Analysis, Statistical Evidence

- Florida, Full Network
 - Kaveh Sadabadi, UMD

- Colorado Results
 - Yi Hou, NREL

Traffic Volume Estimation using GPS Traces

Presented by:

Kaveh Farokhi Sadabadi

Analysis Performed by:

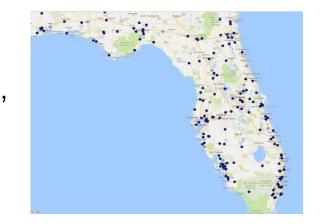
Przemyslaw Sekula and Zachary Vander Laan

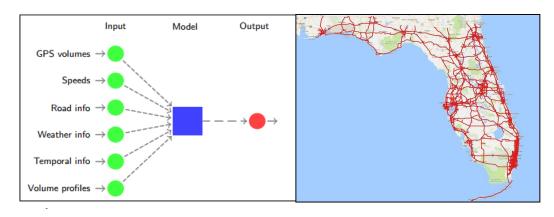
National Webinar

May 23, 2018

Presentation Outline

- Overview
 - Objectives
 - Volume estimation approach
- Florida case study
 - Dataset
 - Results
 - Statewide Estimation
 - AADT & AAWDT
- Summary & Next Steps

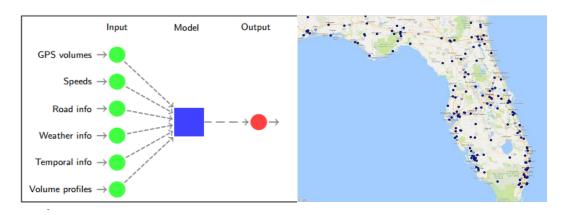




Objectives

- Given the following:
 - Probe volumes (processed from GPS traces of a subset of vehicles),
 - Other archived data (speeds, road geometry, weather, etc.)
 - Counts at permanent traffic monitoring stations
 - TTI volume estimates

Can we build a model to accurately estimate statewide volumes?



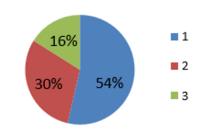
Volume Estimation: General Approach

Develop and Train Model

- Where? TMC segments associated with permanent count stations
- How? Construct machine learning model to learn relation between input variables and permanent count station volumes

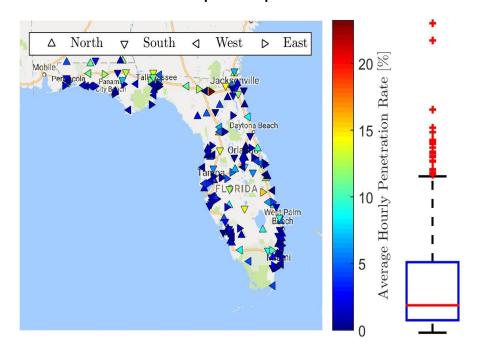
Apply model to state road network

- Where? All TMC segments on road network
- <u>How</u>? Apply trained model to input variables from any TMC segment on the network



Florida Dataset (Q4 2016)

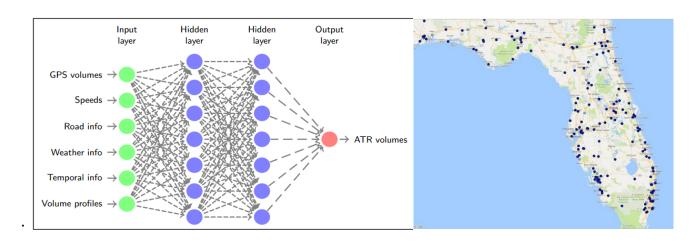
At all TMC segments

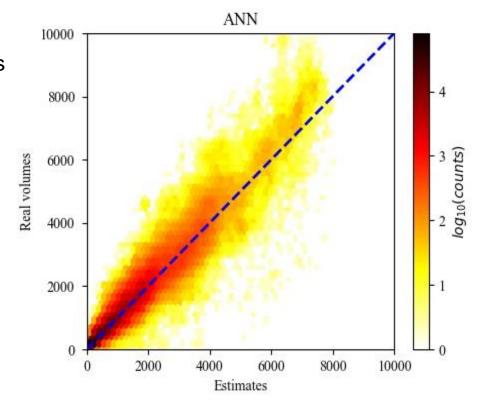

- GPS probe data (INRIX)
 - 75M trips, 3.4B pts (20M trips, 1.4B pts in MD)
 - Penetration rate: 2.1% median (1.9% in MD)
 - Snapped to XD segments
- Probe Speed data (HERE)
- Road characteristics
 - NPMRDS TMC shape file features
 - Open Street Map (OSM) conflation
- Weather data (permanent stations)
- TTI hourly volume estimates

- 1: cars / light-duty trucks
- 2: medium-duty trucks
- 3: heavy-duty trucks

At permanent count stations

- Traffic counts (FDOT)
 - Used for model training / evaluation
 - Used to estimate probe penetration rate





Florida Model Evaluation

- Model: "Dense" Artificial Neural Network (ANN)
- Cross validation (repeat 173 times)
 - Train model using data from 172 of 173 permanent count stations
 - Generate model predictions using data from remaining station

• <u>Evaluation</u>: Compare estimated / observed volumes & generate metrics

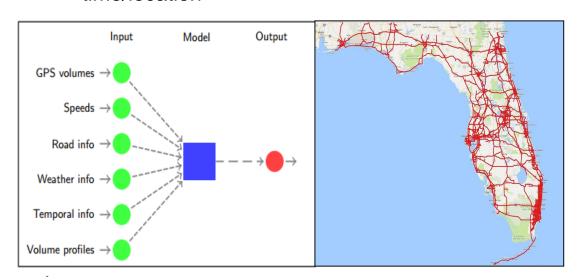
Florida Results: Summary

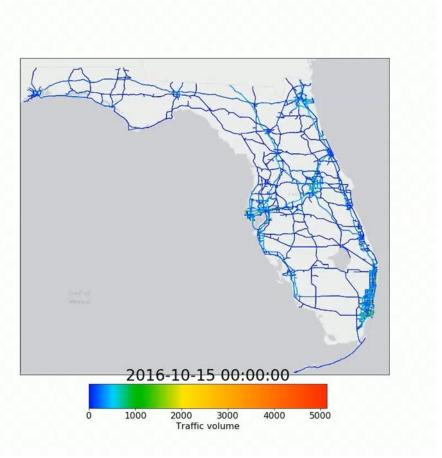
→ Overall median error metrics:

- R2 = 0.83
- MAPE = 25%
- EMFR = 7%
- Promising model performance, over a variety of scenarios
- Better performance on higher road classes
- Better performance as average traffic volume increases

Median Error Metrics by Scenario

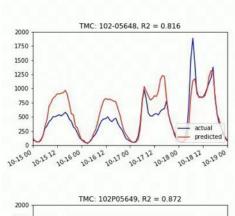
R2	MAPE (%)	EMFR (%)	Obs
0.86	21	6	195704
0.82	26	7	370567
0.83	33	7	128419
R2	MAPE (%)	EMFR (%)	Obs
0.81	29	7	465591
0.86	22	6	164465
0.88	18	6	49221
0.87	19	6	15413
R2	MAPE (%)	EMFR (%)	Obs
0.49	20	9	405759
0.72	32	3	288931
0.51	22	10	116542
0.85	26	6	578148
	0.86 0.82 0.83 R2 0.81 0.86 0.88 0.87 R2 0.49 0.72 0.51	0.86 21 0.82 26 0.83 33 R2 MAPE (%) 0.81 29 0.86 22 0.88 18 0.87 19 R2 MAPE (%) 0.49 20 0.72 32 0.51 22	0.86 21 6 0.82 26 7 0.83 33 7 R2 MAPE (%) EMFR (%) 0.81 29 7 0.86 22 6 0.88 18 6 0.87 19 6 R2 MAPE (%) EMFR (%) 0.49 20 9 0.72 32 3 0.51 22 10

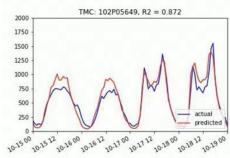


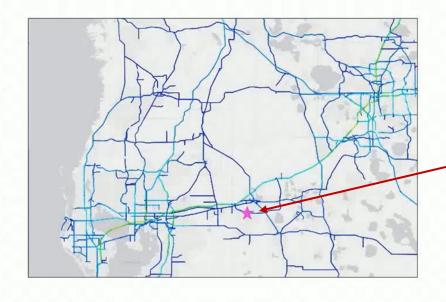


Florida Statewide Model

- Apply trained model to entire road network
 - Requires 3 months of hourly input data at ~20k TMC segments
 - Generate hourly volume estimates at each input time/location

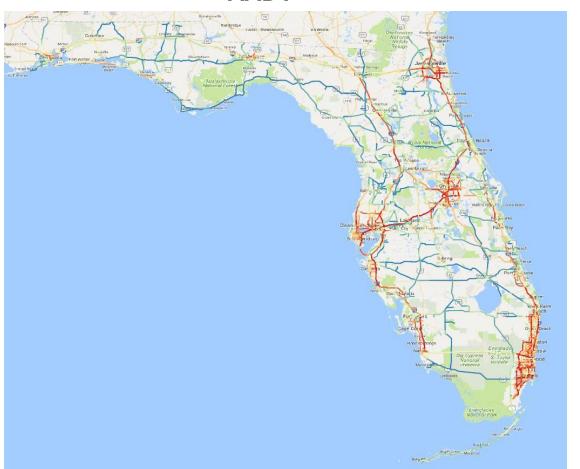


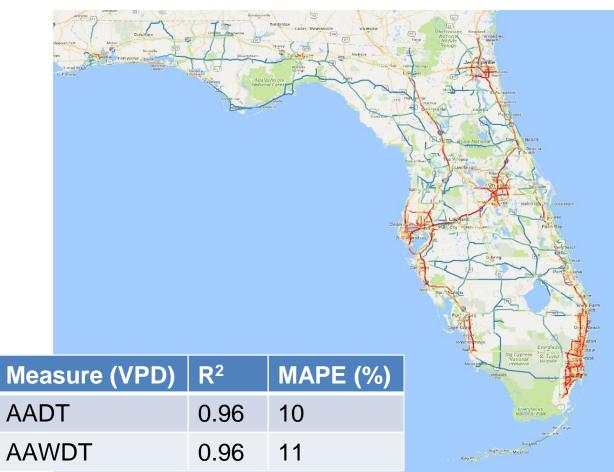




Florida Statewide Model: Tampa Bay Area

ATR station selected that exhibits typical (median) model performance

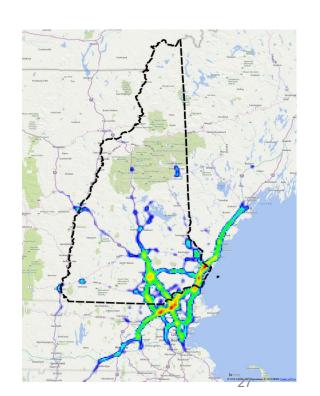




Florida Results: AADT & AAWDT

Summary & Next Steps

- Hourly volumes:
 - Results are good and can be a useful product for both public and private sector
 - Estimation quality improves with road class and actual volumes (number of probes)
 - Estimates meet requirements for most planning and operational purposes
 - Estimates can be safely used for performance measurement and reporting


shutterstock com - 41874190

- AADT and AAWDT estimates:
 - Results are astoundingly good!
 - Consistent with expectation along major highways and urban areas
- Freight volumes
 - Generated volume estimates for light and heavy trucks
 - Results are very promising. Details will be shared in future presentations.
- Test spatial transferability of models
 - Can a model be trained with data from one location, and applied elsewhere?
 - Working with Florida, Maryland and New Hampshire datasets

Questions

Contact Information

Kaveh Farokhi Sadabadi (PI)

kfarokhi@umd.edu

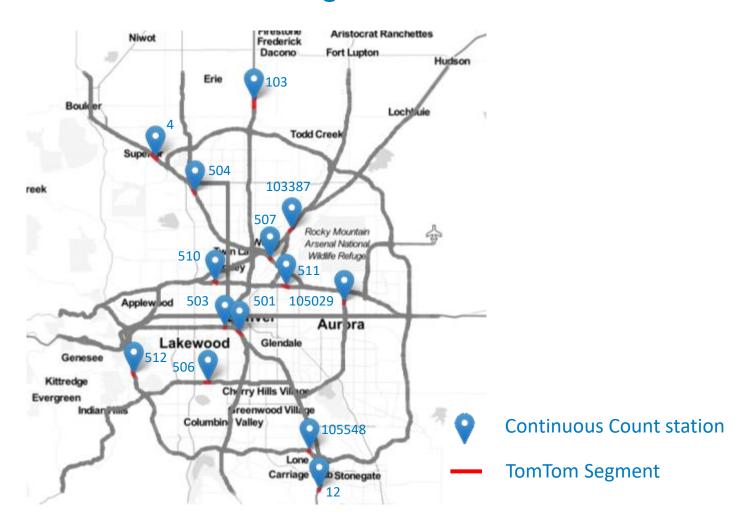
Przemyslaw Sekula

psekula@umd.edu

Zachary Vander Laan

zvanderl@umd.edu

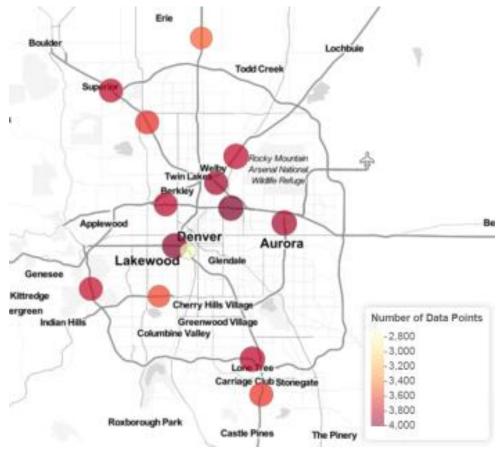
Ubiquitous Volume Estimation – Both Freeway and Off-Freeway



Results on Colorado Roadways Freeways and Off-freeways

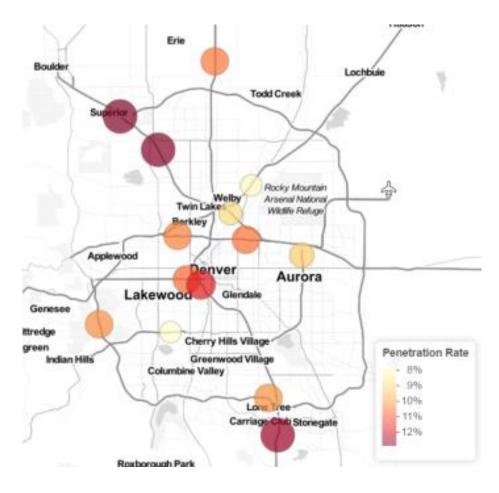
Volume Estimation on Freeways

14 CCS locations and TomTom segments



Data Sources – both Freeway and Off-Freeway

- CDOT continuous count stations (freeways) and 48-hour short-term counts (off-freeways)
 - Hourly volume, road class, number of lanes
- Weather Underground
 - Temperature, precipitation, visibility, fog, rain, snow daily (freeways) and hourly (off-freeways)
- TomTom GPS Data
 - Probe count key ingredient, speed, speed limit
- Temporal information
 - Month, day of week, hour of day


Data Points – Freeway Analysis

- Feb 1, 2017 April 30, 2017
- A total of 52,092 observations
- Ranges from 2800-4000 observations at each CC location

Penetration Rates – Freeway Analysis

- Percentage of traffic covered by GPS probe data
- Ranges from 8%-12%

Estimation Methodology

Machine learning


- Random Forest (RF)
- Gradient Boost Machine (GBM)
- Extreme Boost Machine (XGBoost)

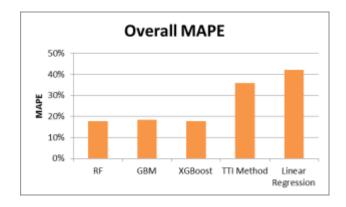
Advantages

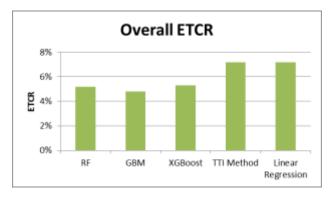
- Do not require detailed mathematical forms and assumptions on variable distributions
- Suitable for capturing the underlying relationships among different variables in an environment of uncertainty
- Disadvantages
 - Interpretability of input variables ("black box")
 - Only predict within bounds of training no extrapolation

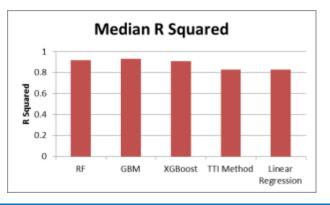
Model Training and Validation

- In each iteration
 - 13 stations are used for training
 - 1 station is used for validation
- Repeat this 14 times and report validation results for all 14 locations

 Accuracy metrics accrued from validation of 14 iterations (similar method used for off-freeway)

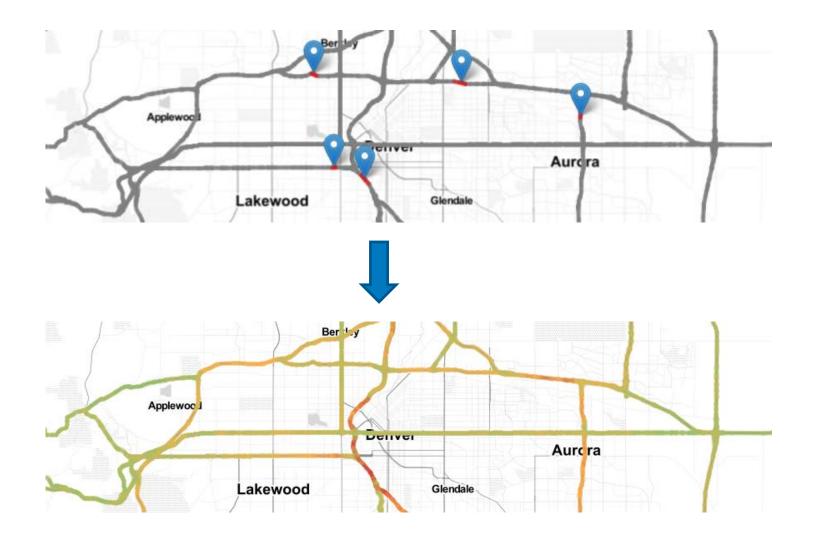

Model Results


- Results exceed the survey expectation: ETCR<10%
- About 18% error relative to observed volume
- XGBoost is the most computational efficient


Model	MAPE	ETCR	R2	Training Time
RF	17.8%	5.2%	0.92	73s
GBM	18.3%	4.8%	0.93	124s
XGBoost	17.7%	5.3%	0.91	13s

Model Comparison

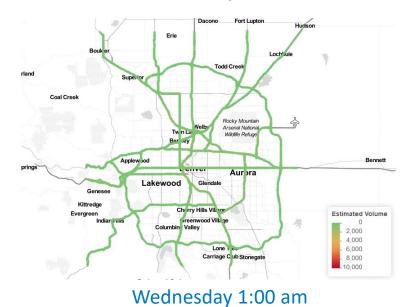
- Compare with TTI Method
 - MAPE: ~50% reduction
 - ETCR: ~30% reduction
 - \circ R²: ~10% increase
- Compare with linear regression:
 - MAPE: ~60% reduction
 - ETCR: ~30% reduction
 - R²: ~10% increase



Contribution of Probe Vehicle Data

 Probe vehicle data has significant impact on volume estimation accuracy

	Overall MAPE	Overall ETCR	Median R ²
Without Probe Data	39.4%	12.4%	0.65
With Probe Data	17.7%	5.3%	0.91


Solution to Enhancing Network Observability

Traffic for Different Time Periods

Wednesday 8:00 am

Boul er

Coal Creek

Todd Creek

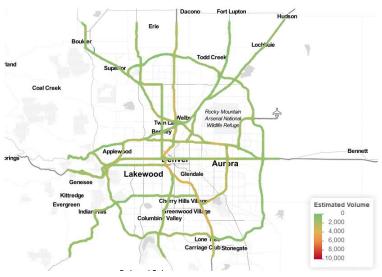
Arsenal National Wildle Reluce
Ber sey

Applew od

Genesee

Kittredge
Evergreen
Indian miss
Greenwood Ville ge
Columbin Valley

Lone 1 Co.
Carriage C ub Stonegate


Todd Creek

Estimated Volume

Facenwood Ville ge
Columbin Valley

Lone 1 Co.
Carriage C ub Stonegate

Wednesday 2:00 pm

Saturday 8:00 am

Does It Work Off Freeways?

Road Functional Class

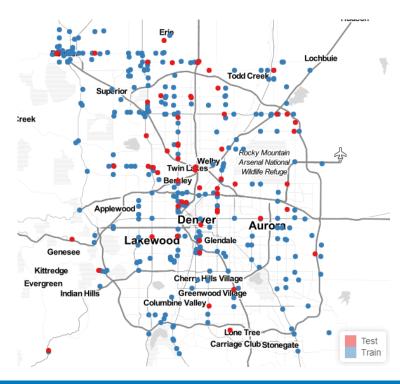
FHWA functional classification

Freeways

- Interstates
- Other Freeways

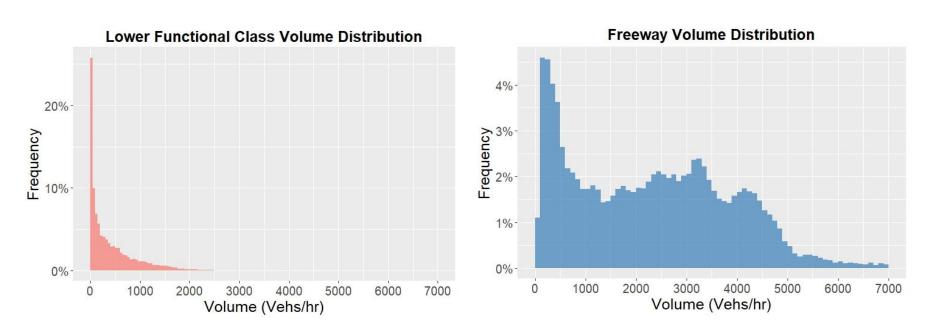
Lower Class Roads

- Principal Arterials
- Minor Arterials
- Major Collectors
- Minor Collectors
- Local Streets


	Lower Class Roads	Freeways
Percentage of Miles	98.5%	1.5%
Percentage of Lane Miles	96.7%	3.3%
Percentage of VMT	68.5%	31.5%
Monitoring Method	Short-term counts	Continuous count stations & Short-term counts

Data source: FHWA Highway Statistics 2013

Volume Estimation on Lower Functional Class Roads


	Lower Class Roads	Freeways
Volume data source	48-hour short-term count	Continuous count stations
Number of locations / Data points	359 / ~35,000	14 / ~52,000
Data collection period	Jan. – Sep., 2017 (9 months)	Feb. – Apr., 2017 (3 months)

- 300 for training/calibrating
 - Total of 30,096 data points
- 59 locations for testing
 - o Total of 5,118 data points

Hourly Volume Distribution

- Volume data is directional both for volume and probe counts
- Lower functional class
 - More than 25% of hourly volumes are between 0 to 50 vehs/hr
- Freeway
 - ~1% of hourly volumes are between 0 to 100 vehs/hr

48-hour Count Data Characteristics by Functional Class

- ~80% of observations on principal and minor Arterials
- Volume on local streets are extremely low
- Few probe counts and low penetration rate on local streets

Functional Class	Ptg. of Observations	Avg. Hourly Volume	Avg. Hourly Probe Count	Avg. Hourly Penetration Rate	
Principal Arterial	52%	52% 619		7.7%	
Minor Arterial	27%	257	16.9	7.7%	
Major Collector	13%	129	5.9	4.1%	
Local Street	8%	8% 19		3.1%	
Overall	100%	414	29.8	6.4%	

Input Variables for Hourly Volume Estimation

- TomTom Traffic data from probes
 - Hourly average speed and probe count
- Hourly weather information (previously daily)
 - Temperature, precipitation, visibility, fog, rain, snow
- Road characteristics
 - Road class, urban or not, speed limit
 - 2015 AADT
 - Longitude, latitude
- Temporal information
 - Month, day of week, hour of day
- Model training and validation used similar procedures (Random assignment to 10 groups : train on 9, validate 10th)

Model Evaluation Criteria

- Mean Absolute Percentage Error (MAPE)
 - Reflect the absolute volume accuracy
- Coefficient of Determination (R^2)
 - Explanatory power of model

New Measures need for Off-Freeway Results

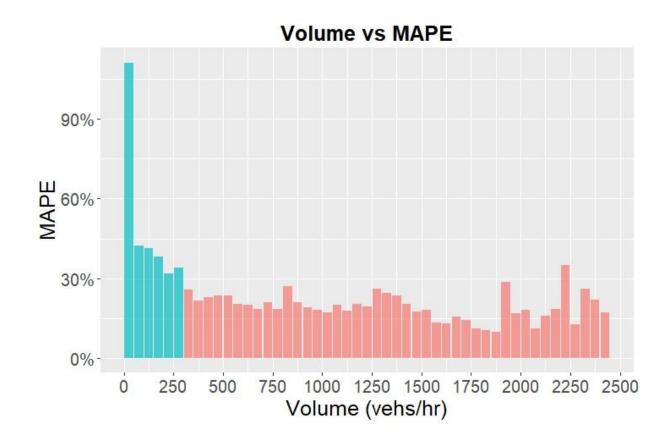
- Error to Maximum Flow Ratio (EMFR)
 - Reflect volume to capacity fidelity
- Mean Absolute Error (MAE)
 - Reflect the absolute error
 - Effective for low volume roads

Model Results Comparison

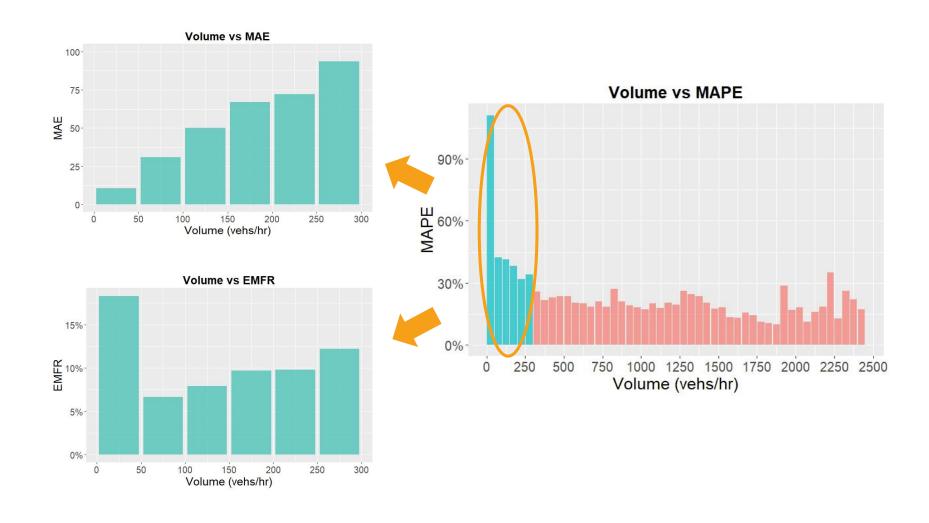
Much more accurate than linear regression and AADT based methods

Model	MAPE*	MAE	EMFR	R2
XGBoost	50.6%	89.2	13.2%	0.88
Linear	314.7%	153.1	29.5%	0.80
AADT Based Method	161.7%	304.4	26.5%	0.16

^{*}The results include extreme low volume

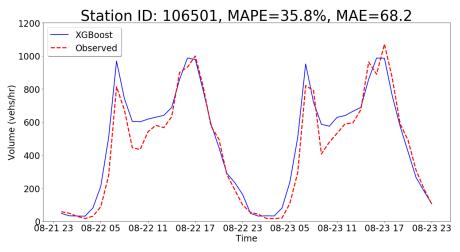

Further examine MAPE and EMFR for volume > 20 vehs/hr

Model	MAPE (Vol>20)	EMFR (Vol>20)	
XGBoost	29.7%	10.8%	
Linear Regression	90.4%	20.5%	
AADT Based Method	124.9%	28.1%	

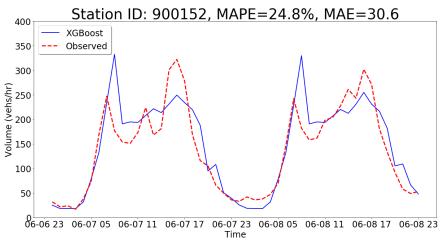

Need to look at accuracy in volume ranges

MAPE of Different Volume Range

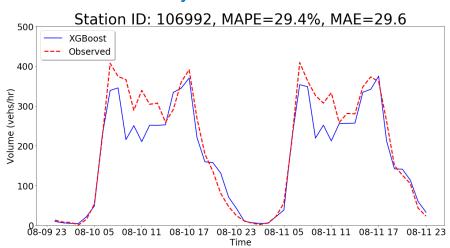
- Volume>300 vehs/hr: MAPE is low and stable
- Volume<300 vehs/hr: MAPE is high, but model is still good

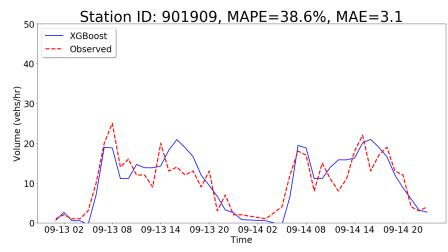


MAPE of Different Volume Range



48-Hour Prediction on Test Locations


Principal Arterial

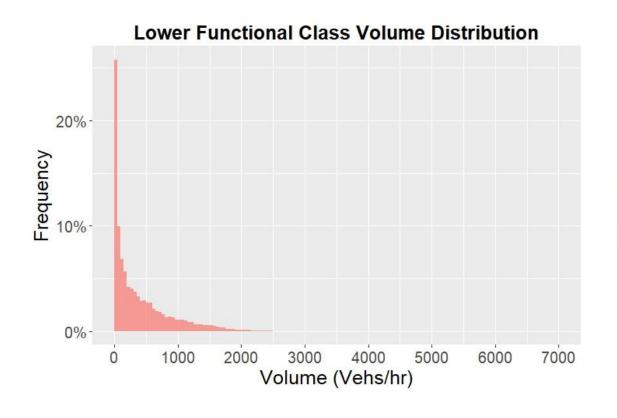

Minor Arterial

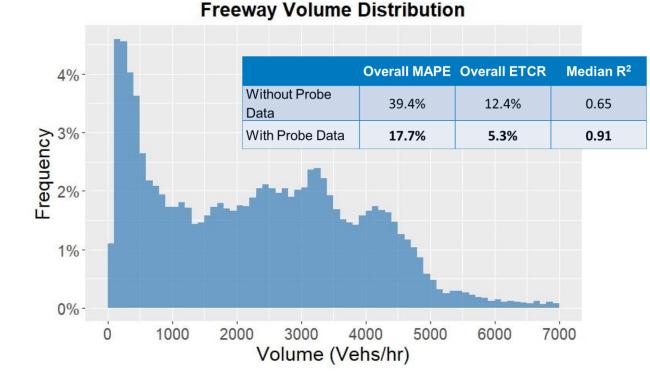
Major Collector

Local Street

Summary

- Machine learning provides high accuracy for hourly volume estimation on unmonitored segments
- XGBoost is promising tools for hourly volume estimation on both freeways and lower functional class roads
- GPS probe data has significant impact on volume estimation
- Next steps
 - Integrate to one single model to estimate volume on all functional class
 - Scale up to state level estimation
 - AADT estimation

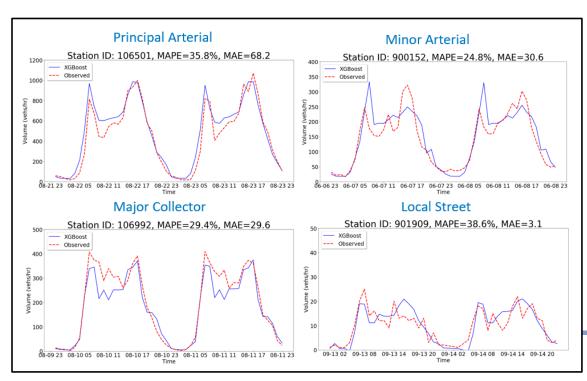

Questions?

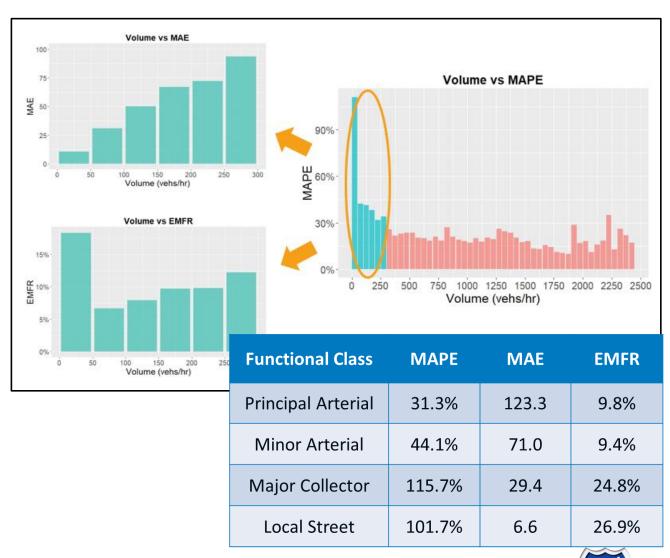

Yi Hou, PhD

National Renewable Energy
Laboratory (NREL)
yi.hou@nrel.gov

Summary

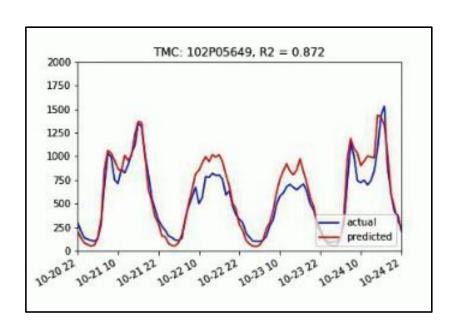
Off-Freeway volumes significantly less





Colorado Off-Freeway Results

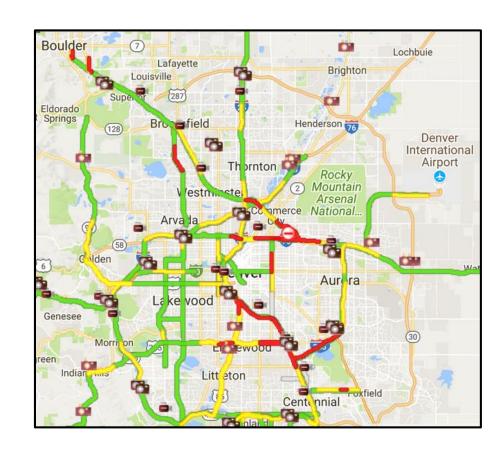
- Stable, unbiased estimates at low volume
- Performance is volume dependent
 - Principal & Minor Arterials GOOD
 - Major Collector Maybe
 - Local Street Not likely
- Need Low-Volume Filter / Flag



May 23, 2018 56

Florida Results

- Trained network on Freeways through Minor Arterials
- EMFR < 7%
- Performance volume dependent


Road Classification	R2	MAPE (%)	EMFR (%)	Obs
Freeways (FRC 1)		21	6	195704
Maryland (mostly FRC 1)	0.86	23	7	158040
Principal Arterials (FRC 2)		26	7	370567
Major/Minor Arterials (FRC 3 & 4)		33	7	128419

Hourly Volume (vph)	R2	MAPE (%)	EMFR (%)	Obs
0-1k	0.81	29	7	465591
1k-2k	0.86	22	6	164465
2k-3k	0.88	18	6	49221
3k+	0.87	19	6	15413

Putting this to work – sample application

- Colorado calibrate operations sensors
 - Colorado maintain nearly 3000 operations sensors related to ramp metering, signals, speed, etc.
 - Maintaining/calibrating that network is sensor is time and resource intensive.
 Subject to weather (wind) issues.
 - A tool to identify, prioritize and manage that sensor network could extend already scarce maintenance funds.
 - Exploring with CDOT on how to integrate volume estimation with data systems

Performance Measures for Each Roadway – for Each Hour

- Maryland Hours of Delay
 - Initial attempt to apply hours of delay resulted in abnormally large delay estimates
 - During winter storms, prevailing methods assumed normal 'weekday' traffic
 - Although real-time speed estimates were available, volume data proved inadequate
 - New method allows for 24x7x365
 applications of performance metrics, rather than 'average conditions'

On-going and Future Work

- Confidence Measures
- Handling volumes outside of training data set
- Better, consistent, standardize accuracy metrics
 - By number of observed probes
 - By roadway volume / AADT
 - By time of day
- Estimating truck volumes

Seeking Operational Partners:

• Taking it from the Laboratory to the Streets
If interested please contact Kaveh, Denise or Stan

Poll Question #1

How would you use this volume data in your agency?

___ Planning purposes

Operational purposes

____ Management Decisions

All of the above

Thank You!

For Questions, please contact:

- Kaveh Sadabadi (UMD-CATT) 301-405-1352 or kfarokhi@umd.edu
- Denise Markow (I-95 Corridor Coalition) 301-789-9088 or <u>dmarkow@i95coalition.org</u>
- Stanley Young (NREL) 301-792-8180 or Stanley.Young@nrel.gov

Thank You!