
RITIS User Group

Web Meeting | October 20, 2022

Welcome!

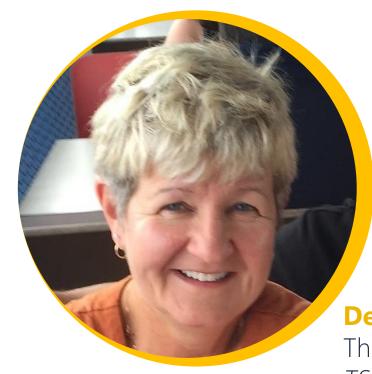
- We are using Zoom Webinar
- AUDIO (Computer): Use your computer speakers and microphone by clicking the "Join Audio" button at the bottom left of the screen. You will be muted.
- Alternate Audio (Phone): Call into the meeting by dialing the phone number based on your location (provided in the confirmation email) and enter the Meeting ID at the prompt. You will be muted.
- This web meeting is being recorded.
- Questions with the audio or web? Please contact Esther directly via email (<u>ekleit@kmjinc.com</u>)
- The **Chatbox** is not available to participants. Please use the **Q&A box** for questions to the presenters

Asking Questions in the Q&A Box

Click on the Q&A icon at the bottom of your screen

- The questions in the Q&A box will be monitored and answered either between presentations or at the end of the meeting
- You can keep track of your questions in the "My Questions" tab in the Q&A box

Asking Questions Verbally


• Please raise your hand (click on the hand icon at the bottom of the screen) and a host will unmute you.

- Please give your name and agency before asking your question
- Please mute yourself when you are finished speaking

Coalition Update

Denise MarkowThe Eastern Transportation Coalition
TSMO Program Director

Coalition Update

RECENT

- ✓ Electric Vehicle Working Group Meeting (invite only) Sept. 15, 2022.
- ✓ Travel Information Committee Meeting: Scenario Planning & Info Updates (Hybrid) (invite only) Sept. 22, 2022
- ✓ All Things ADAS (Advanced Driver Assist Systems) Webinar Sept. 27, 2022
- ✓ Transportation Data Marketplace: Waypoint, Origin-Destination, and Freight Vendor Forums (invite only) - Aug. & Sept. 2022
- ✓ Potomac HOGs Exchange (In Person) (invite only) Oct. 18, 2022

UPCOMING

- ➤ Del-Val HOGs Exchange (In Person) (invite only) Nov. 2, 2022
- > Automated Traffic Signal Performance Metrics (ATSPM) Webinar Nov. 9, 2022
- > RITIS Workshop #3 After Action Templates Nov. 17, 2022
- > Southern HOGs Exchange (In Person) (invite only) Dec. 6-7, 2022
- > NHTS Nex Gen Webinar -Jan. 26, 2023
- RITIS User Group Meeting Feb. 2, 2023

Transportation Data Marketplace Update

- The new Transportation Data Marketplace is live! (as of July 1st)
 - TDM Webpage (https://tetcoalition.org/projects/transportation-data-marketplace/)
 - 6 Data Sets: Travel Time & Speed, Volume, Conflation, Origin Destination, Waypoint, and Freight
 - 12 Vendors
 - New Automated DUA process (https://dua.tdmmarketplace.com/)

Welcome & Introductions

Matt Glasser
National TSMO Account Lead
Arcadis
RITIS User Group Co-chair

Today's Meeting

Welcome and Introductions	Denise Markow, TETC Matt Glasser, Arcadis
New RITIS Tools and Recent Enhancements	Michael Pack
Spotlight Presentation: Ohio DOT's use of RITIS for Travel Time Comparison and Travel Time Delta Ranking	Charlie Fisher, Ohio DOT
Causes of Congestion Tool Update	Mark Franz, UMD CATT Lab
PDA Suite Performance Measures Working Group Update	John Allen, UMD CATT Lab
RITIS Product Enhancement Working Group Update	Bob Frey, Massachusetts DOT
Agency Input Session	All
Wrap Up and Remaining Questions	Matt Glasser

Today's Speakers

Michael Pack UMD CATT Lab Director

Charlie Fisher Ohio DOT Statewide Traffic Operations Engineer

Mark Franz

UMD CATT Lab

John Allen **UMD CATT Lab** Faculty Assistant, Outreach & Education

Bob Frey, Massachusetts DOT Director of Project-Oriented Planning

Meeting Participants

_		ncies			
Λ	$\alpha \alpha$	n			C
\boldsymbol{H}	25		L	_	.3
	0-	• •	•	_	_
• •	0-	• •	•	_	_

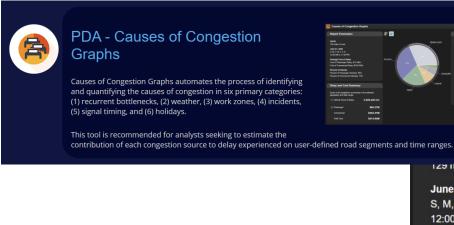
AASHTO	City of Charlotte, NC	Florida DOT	JPCL Engineering, LLC	Miami - Dade County	New York City DOT	Rhode Island Division of Statewide Planning	University of Maryland CATT Lab
Alamo Area MPO	City of Eugene, OR	Florida's Turnpike Enterprise	Kapsch TrafficCom USA	Miami Dade TPO	New York State DOT	Rhode Island DOT	University of Nevada-Las Vegas
Arcadis	City of Franklin, TN	Gannett Fleming	Kentuckiana Regional Planning & Development Agency	Michael Baker International	NJTPA	RTC OF SOUTHERN NEVADA	Vermont AOT
Arizona DOT	City of Roswell, NM	Georgia Environmental Protection Division	Kimley-Horn	Michigan DOT	North Carolina DOT	SJTPO	Virginia DOT
Atlanta Regional Commission	City of Sandy Springs, GA	HDR	Knoxville Regional TPO	Mid-America Regional Council	Northern Virginia Transportatin Authority	Southern Georgia Regional Commission	Western Piedmont Council of Governments
AutoReturn	Connecticut DOT	Henry County Government	Louisiana DOTD	Minnesota DOT	Office of Intermodal Planning and Investment	Southwestern Pennsylvania Commission	Westwood Professional Services
Baltimore Metropolitan Council	Corpus Christi MPO	High Street	Maryland DOE	MORPC	Ohio DOT	St Charles County	WILMAPCO
CAMPO (Raleigh)	District DOT	HNTB	Maryland DOT-SHA	MWCOG	Old Colony Planning Council	Tennessee DOT	Wisconsin DOT
Capital Region Planning Commission	DVRPC	Illinois DOT	Maryland Transportation Authority	MWVCOG	Oregon DOT	Texas A&M Transportation Institute	
Central Florida Expressway	Federal Highway Administration	Infosenseglobal	Massachusetts DOT	New Jersey DOT	Pennsylvania DOT	Texas DOT	
Charlotte DOT	Felsburg, Holt, and Ullevig	INRIX	Mead & Hunt	New Mexico DOT	PlanRVA	TRANSCOM	

Poll 1: How often do you attend RITIS User Group Web Meetings?

Answer Options:

- a) 1-2 times per year
- b) 3-4 times per year
- c) This is my first meeting

New RITIS Tools and Recent Enhancements



Traffic Map

Added the ability to change the base map to satellite imagery on RITIS and Traffic View maps.

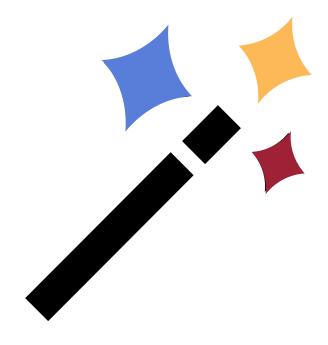
Tool Catalog

Added the newlyreleased <u>Causes of</u> <u>Congestion Graphs</u> to the <u>RITIS Tool Catalog</u>.

Data Source Updates

Updated event lane closure information for Washington, DC

Improved the Maryland Fleet vehicle data feed quality


The API now supports events that have different start and end locations

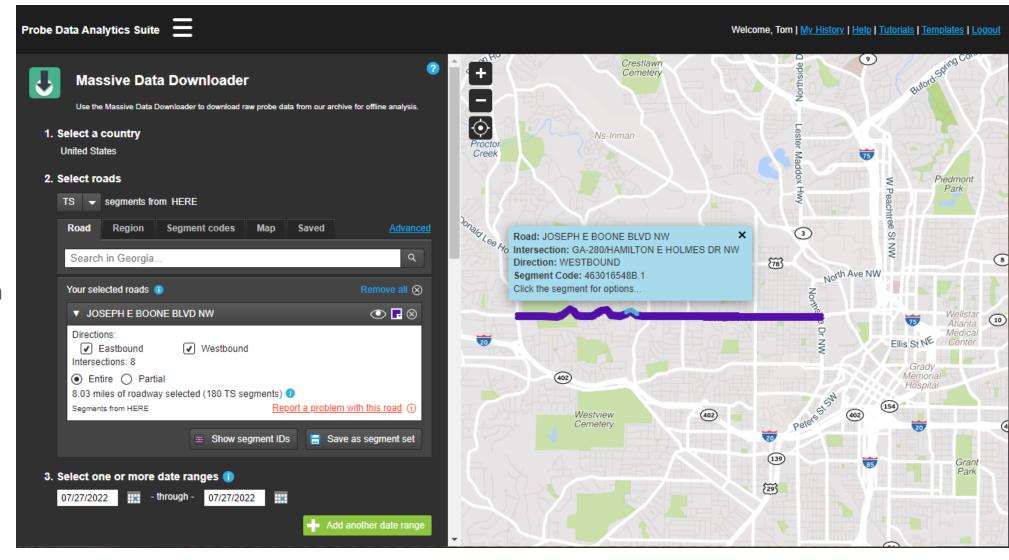
Added support for Special Event events in Delaware

RITIS Enhancements

- ✓ Improved Waze event data loading times
- ✓ Improved stability and security of the <u>Traffic Camera</u> video service
- ✓ Added an <u>FAQ</u> to TrafficView explaining that CCTV video is *not* recorded
- ✓ Enhanced the quality of error logging to improve RITIS customer support
- ✓ Reduced delay when loading imagery on the Weather Radar layer

Corrected Issues

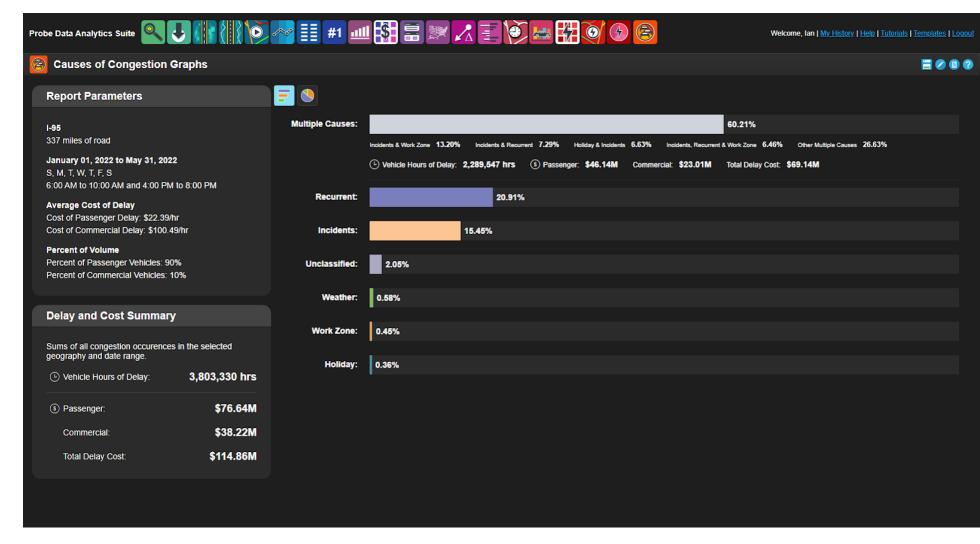
- ✓ Improved the legibility of location labels on the Traffic Map when certain layers are visible
- ✓ Fixed styling for checkboxes when creating an Alert on a work zone profile
- ✓ Fixed minor typo in the account activation email
- ✓ Fixed an issue with reCAPTCHA for TrafficView account registration
- ✓ Fixed the Work Zone Profile link icon on the Future Events Layer event popup window.



Probe Data Analytics Suite

Topology Subsegments in Massive Data Downloader

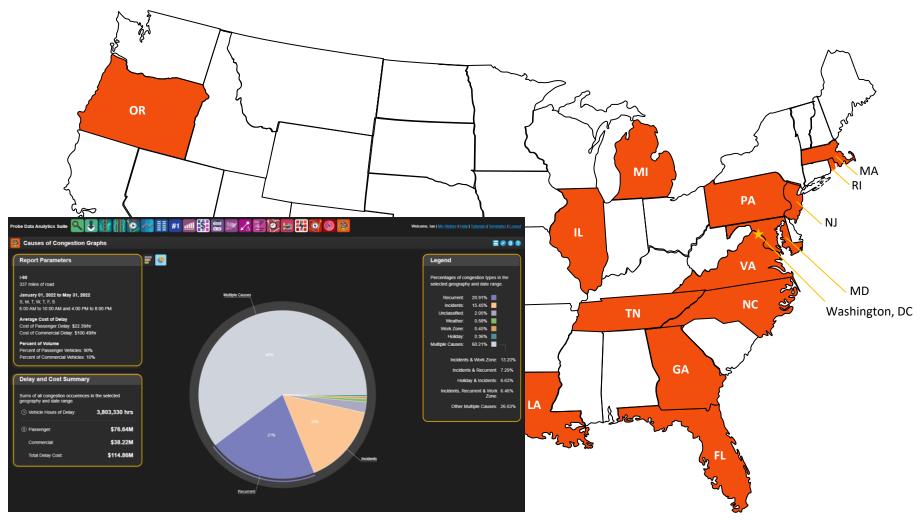
We've added support for **HERE** Topology Subsegments (TS) to the Massive Data Downloader. TSs are a new road segmentation providing finer spatial granularity than TMCs.



Causes of Congestion Graphs

All RITIS/PDA states now have access to CCG—allowing you to estimate the contribution of each congestion source to delay experienced on user-defined road segments and time ranges.

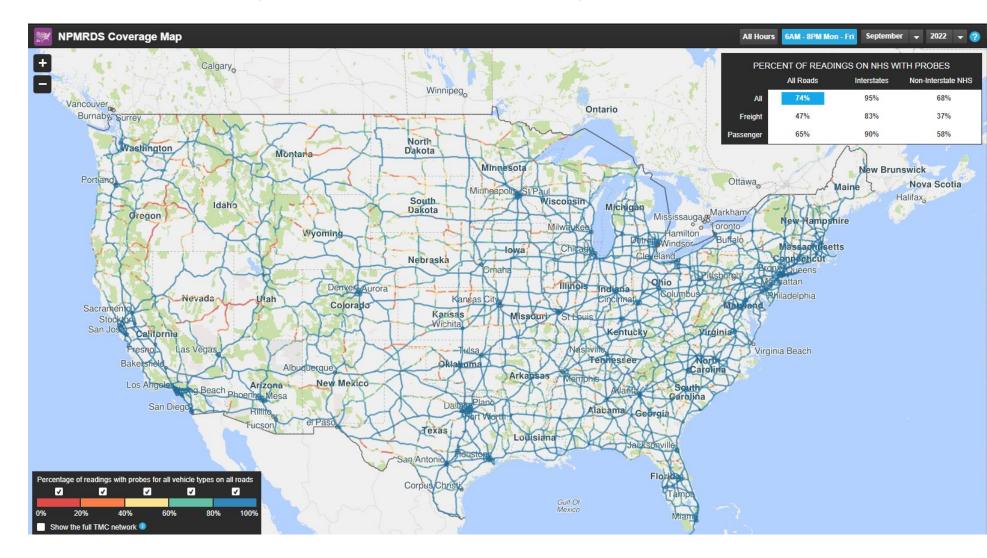
You can select a single date range up to one full-year, and up to three different hourly time ranges to display in either a bar chart or pie chart.



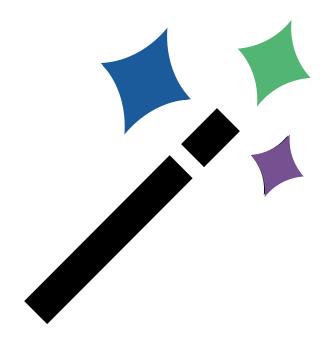
Causes of Congestion Graphs

We've added coverage for ten new states to Causes of Congestion Graphs. The list of supported states is now:

- Florida (NHS roads only)
- Georgia
- Illinois
- Louisiana
- Maryland
- Massachusetts
- Michigan
- New Jersey
- North Carolina
- Oregon
- Pennsylvania
- Rhode Island
- Tennessee
- Virginia
- Washington DC


(<u>NOTE</u>: For all states other than Louisiana, data coverage begins on January 1, 2019, and ends July 2022. For Louisiana, coverage begins on May 1, 2019. New data will be made available on a rolling basis.)

NPMRDS data now updated weekly


Under the new NPMRDS contract, we'll release data every week instead of every month.

Each week covers
Monday through Sunday
local time (following ISO
8601), and we expect to
generally release data
every Tuesday by 12 noon
ET, nine days after the
end of each data week.

PDA Enhancements

- ✓ Updated the popup for roadway incidents in Trend Map, Region Explorer and Bottleneck Ranking to include the associated segment code
- ✓ Enhanced the quality of error logging to improve RITIS customer support
- ✓ Began working on road selection by map click (start and end point)

Corrected Issues

- ✓ Fixed a bug where links from the Bottleneck Ranking tool to an analysis in another tool sometimes did not work correctly
- ✓ Fixed a bug where some roadway incidents were excluded from results, depending on the type of time period chosen for analysis.
- ✓ Fixed an issue preventing traffic signal icons from appearing on Travel Time Comparison results.
- ✓ Corrected several issues for both Congestion Scan and Corridor Time Comparison:
 - Improved the labeling logic for the road diagrams so that these two tools will now more consistently show labels for all exits
 - Corrected instances for beltways that would show the data running in reverse order on the right-hand plot of the two tools
 - Fixed instances where Congestion Scan would be missing data for certain stretches of road when navigating from Bottleneck Ranking to Performance Charts and then onto Congestion Scan.

Signal Analytics

More Available Metrics

We've added **43 new optional metrics** to the Intersection Analysis results table, bringing the total to 60 available metrics. You can choose these metrics by clicking "Display Options" above the table when viewing results for any query.

We've also fixed an issue where sorting by LOS (Level of Service) in Intersection Analysis would not give the correct sort order.

Table Columns

- All Columns
 - **✓** Rank
 - ✓ Intersection
 - Intersection ID
 - Latitude
 - Longitude
 - ✓ Approach
 - Approach ID
 - ✓ Movement
 - Movement ID
 Vehicle Count
 - ▼ Vehicle Count: Total
 - ✓ Vehicle Count: Stopped
 - Vehicle Count: Through
 - Estimated Volume ?
 - Estimated Volume: Total
 - Estimated Volume: Stopped
 - Estimated Volume: Through
 - ✓ Percent Arrival On Green (POG)
 - ✓ Turn Percentage
 - Split Failure
 - ✓ Split Failure: Percentage
 - ✓ Split Failure: Count
 - Split Failure: Est. Volume ?
 - ✓ Level of Service (LOS)
 - Travel Time
 - ✓ Travel Time: Avg
 - Travel Time: Med
 - Travel Time: Min
 - ✓ Travel Time: Max
 - Travel Time: 5%
 - Travel Time: 25%
 - Travel Time: 75%
 - Travel Time: 95%

- Approach Speed
 - ✓ Approach Speed: Avg
 - Approach Speed: Med
 - Approach Speed: Min
 - Approach Speed: Max
 - Approach Speed: 5%
 - Approach Speed: 25%
 - Approach Speed: 75%
 Approach Speed: 95%
- Approach Speed Stop
 - Approach Speed: Stop: Avg
 - Approach Speed: Stop: Med
 - Approach Speed: Stop: Min
 - Approach Speed: Stop: Max
 - Approach Speed: Stop: 5%
 - Approach Speed: Stop: 25%
 - Approach Speed: Stop: 75%
 - Approach Speed: Stop: 95%
- Approach Speed Through
 - Approach Speed: Thru: Avg
 - Approach Speed: Thru: Med
 - Approach Speed: Thru: Min
 - Approach Speed: Thru: Max
 - Approach Speed: Thru: 5%
 - Approach Speed: Thru: 25%
 Approach Speed: Thru: 75%
 - Approach Speed: Thru: 95%

- Control Delay
 - ✓ Control Delay: Avg
 - Control Delay: Med
 - Control Delay: Min
 - ✓ Control Delay: Max
 - Control Delay: 5%
- Control Delay: 25%
- Control Delay: 75%
- Control Delay: 95%

Ohio DOT's use of RITIS for Travel Time Comparison and Travel Time Delta Ranking

Charlie Fisher

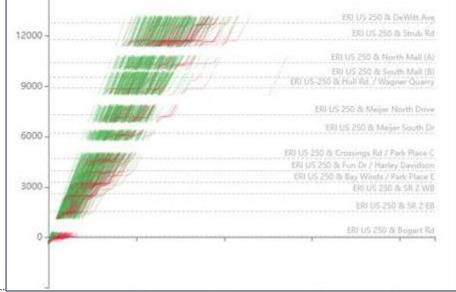
Statewide Traffic Operations Engineer

Ohio DOT

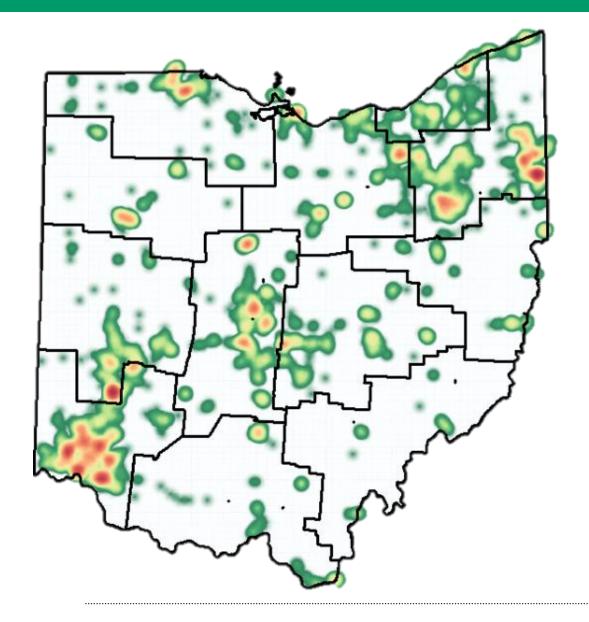
Using RITIS for ODOT's Statewide Signal Retiming Project

DEVELOP • IMPROVE • MONITOR • REPORT

Charlie Fisher, PE
Statewide Traffic Operations Engineer
Ohio Department of Transportation, Office of Traffic Operations


October 20, 2022

TOPICS


- Ohio overview
- RITIS Tools
 - Region Explorer
 - Travel Time Delta
 - Dashboard
 - Signal Analytics with INRIX Signal Analytics
- Lessons Learned/Next Steps

OHIO OVERVIEW

ODOT Signal Stats

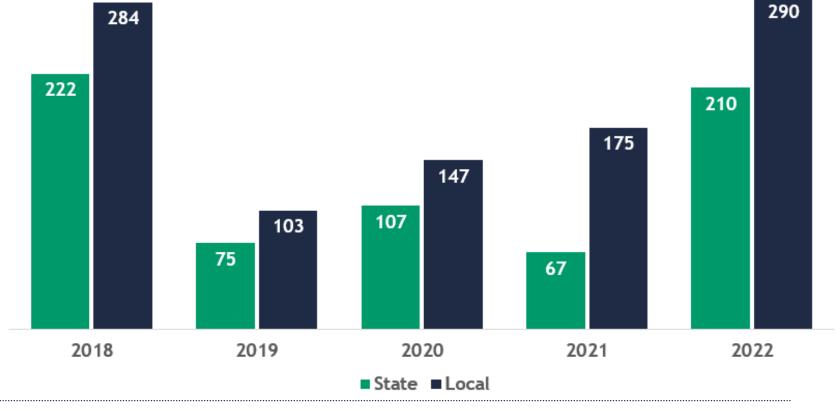
1655 Total Signals780 Signals in Systems126 Signal Systems

Challenges

Staffing

Resources devoted to Signal Performance Data Rising Intersection crashes

ODOT Traffic Operations


OHIO OVERVIEW

Fatalities by Maintaining Agency

% Fatalities			
Year	State	Local	
2018	44%	56%	
2019	42%	58%	
2020	42%	58%	
2021	28%	72%	
2022	42%	58%	

OHIO OVERVIEW

Strategic Highway Safety Plan (SHSP) initiatives

- Leverage new technology that makes intersections safer
- Implement proven and low-cost countermeasures
- Educate roadway users of new intersection types and technology
- Develop and implement plan to address LT and Angle crashes
- Develop and implement plan to address Pedestrian and Bicyclist crashes
- Develop and implement plan to address CMV crashes

OUR PROCESS

ODOT Signal Timing Program (using PDA Suite)

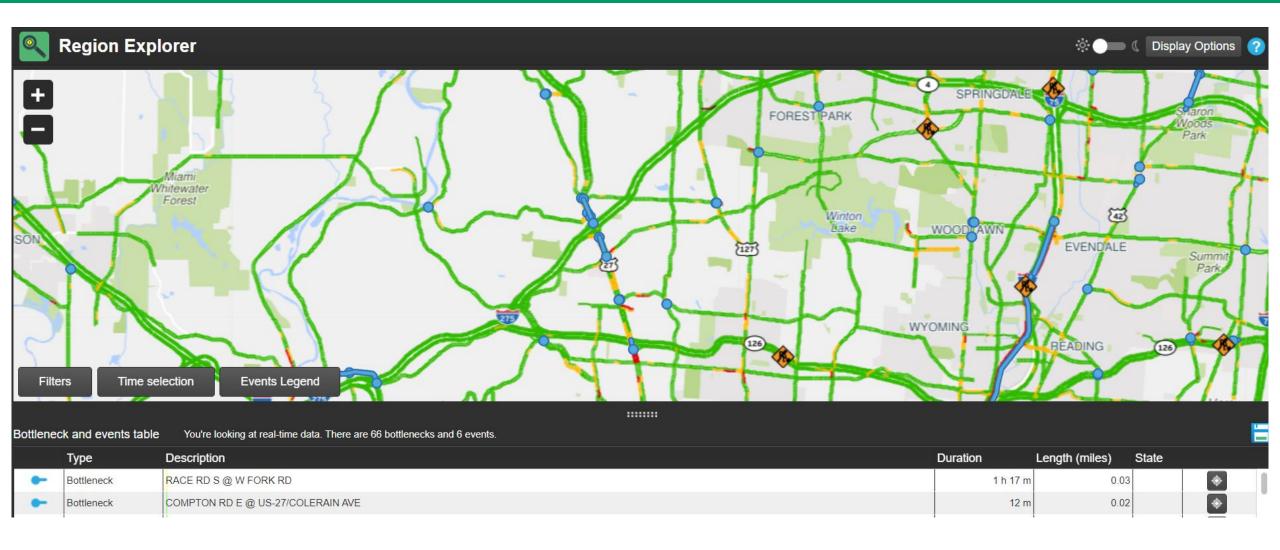
Use **PDA Region Explorer** to help choose which corridors to study

Use PDA Travel Time Delta
Ranking to evaluate re-timed
corridors (trending better/worse)

Use **Signal Analytics** to monitor individual intersection performance to identify those that need adjustments

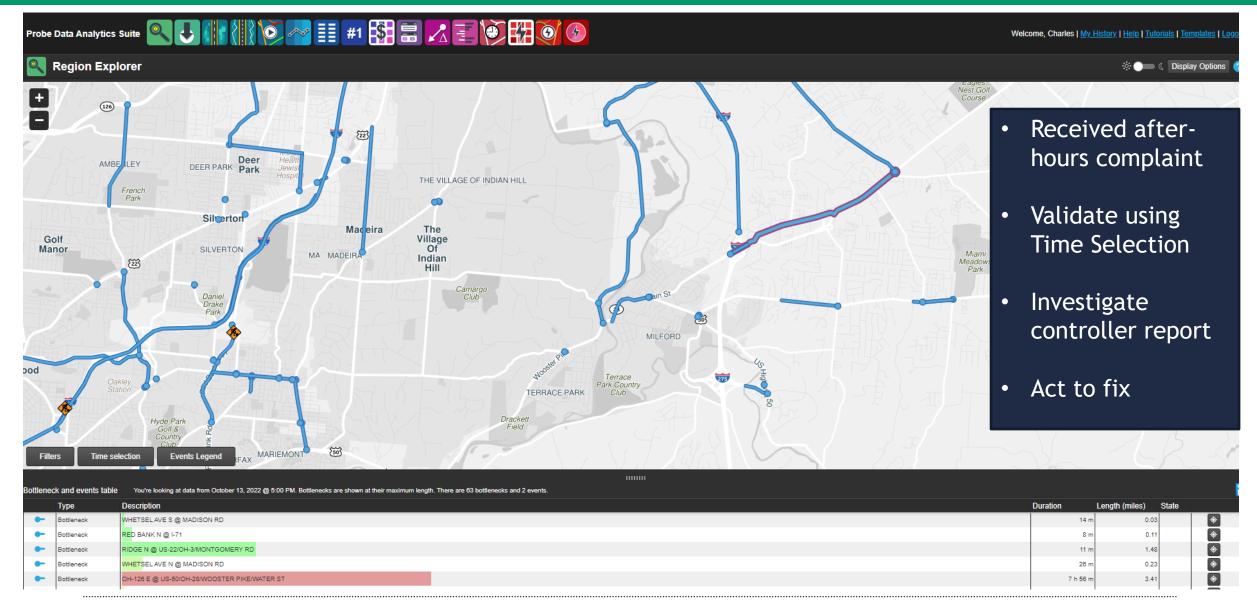
START _____(1)-____(2)-____(3)-_____(4)-_____(5)-___ END

Use **PDA Travel Time Delta Ranking** to evaluate and prioritize candidate corridors

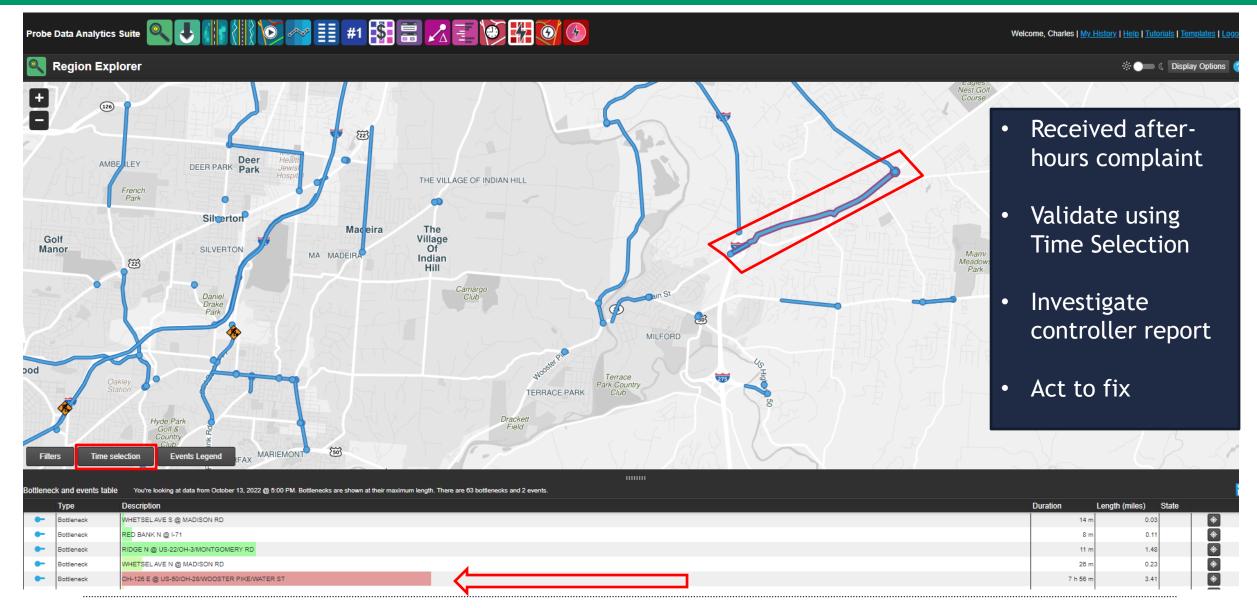

Use **PDA Dashboard** to monitor performance (in real-time) to identify corridors needing tweaking

Report outs on results to:

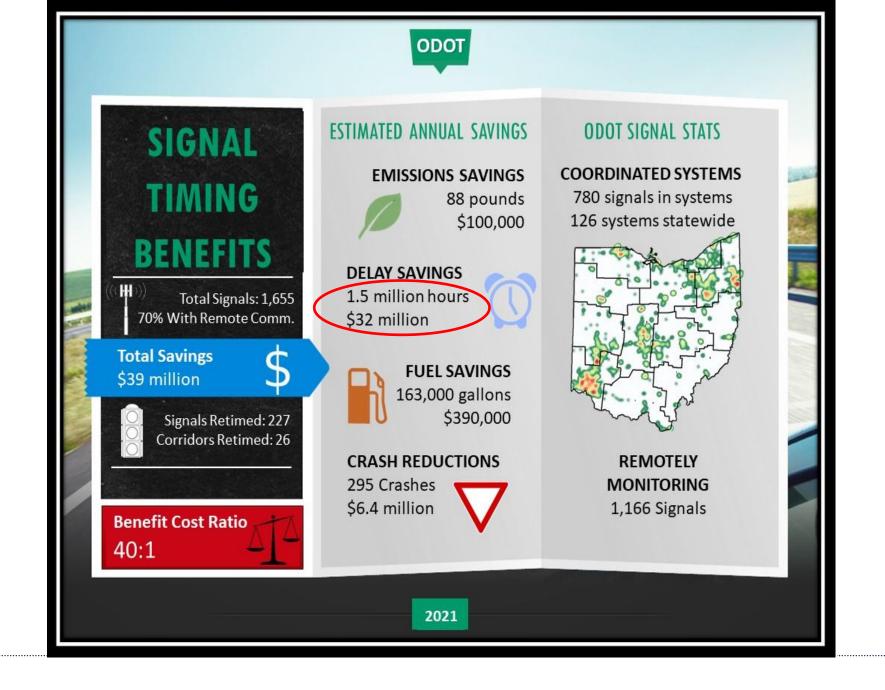
funding managers, upper management and senior leadership, project stakeholders



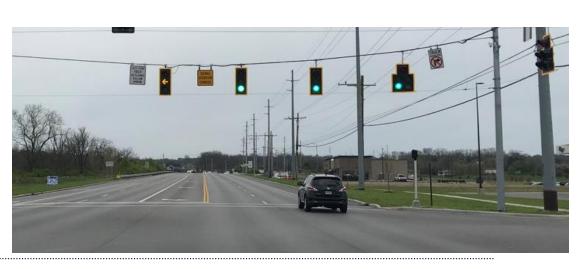
REGION EXPLORER



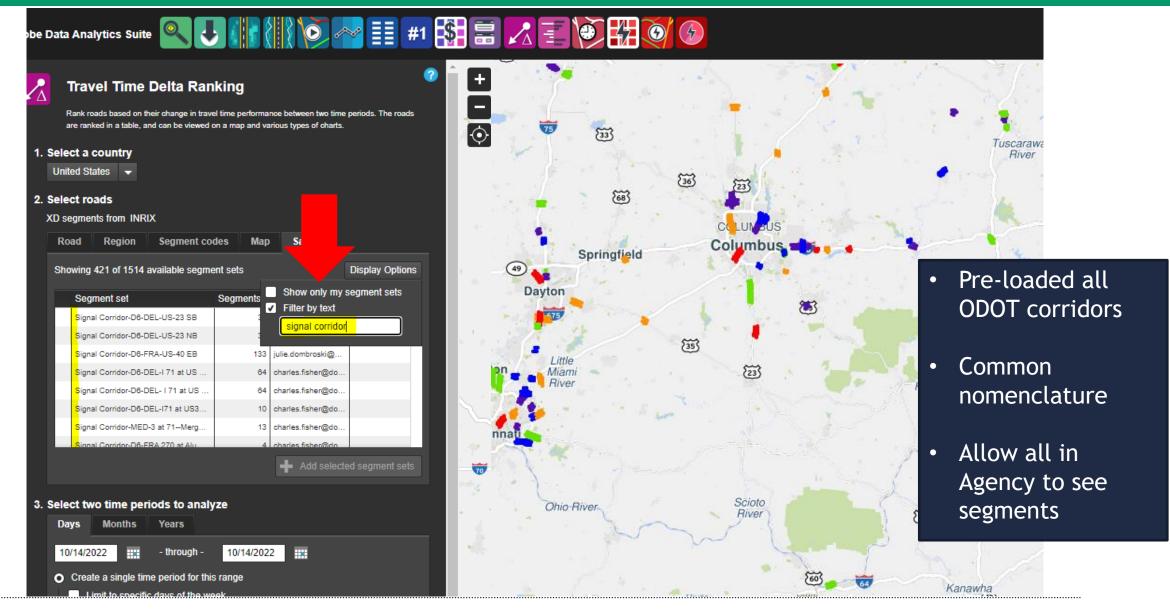
REGION EXPLORER



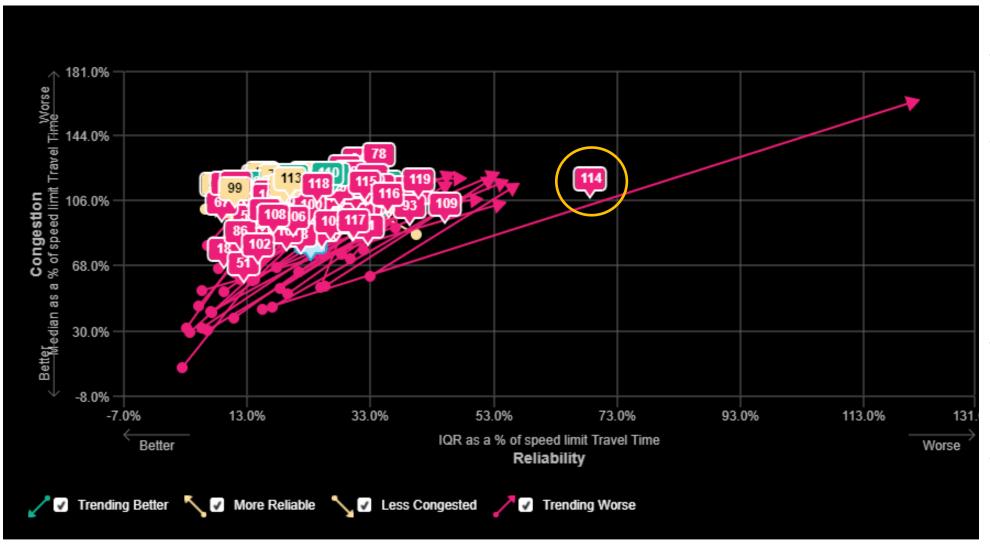
REGION EXPLORER



SIGNAL TIMING PROGRAM


How do we choose which corridors to study?

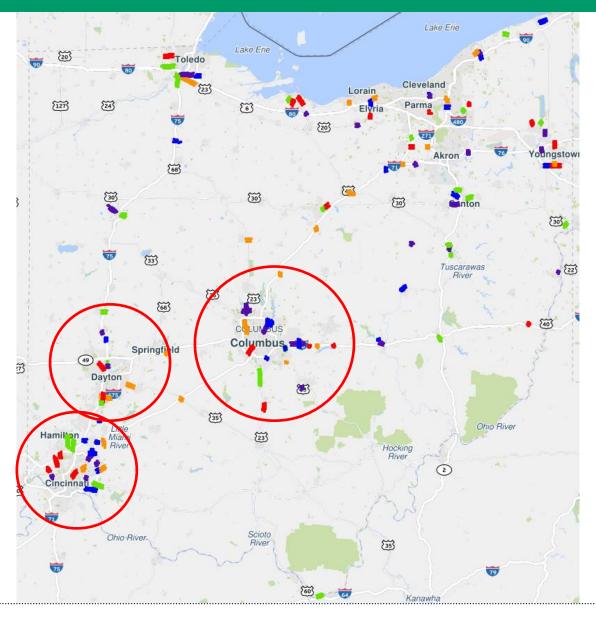
- o 5-7 years
- Crash Trends
- Priority on Tier 1 corridors (>25k ADT)
- Volume Growth
- Squeaky Wheel



TRAVEL TIME DELTA RANKING

TRAVEL TIME DELTA RANKING RESULTS

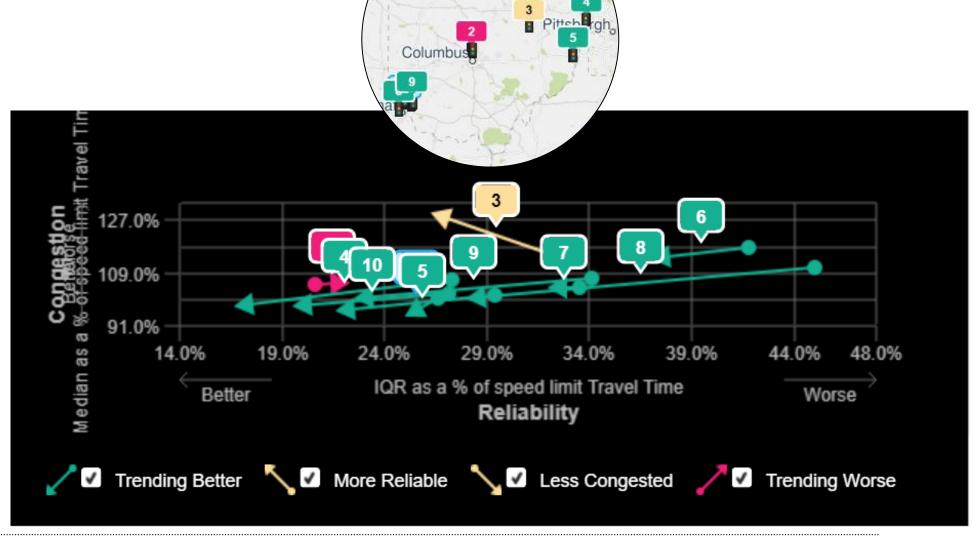
- 126 ODOT corridors evaluated
- Stack and rank corridors based on travel time comparisons
 - Example: 2018v. 2019
- Normalized data based on corridor size
- Longest/pinkest is performing the worst


RANKING RESULTS ARE EXPORTABLE TO EXCEL

nk Corridor	Bearing TTSL (minutes)				elta Median 🔻 IQR Be			
114 Signal Corridor-D8-HAM/WAR Mason Montgomeryâ€"Merged	North	1.3	42.3	164.6	122.3	15.4	121.9	1
51 Signal Corridor-D6-FRA Alum Creek at I 270â€"Merged	West	3.4	8.5	99.7	91.2	2.4	22.6	
98 Signal Corridor-D6-FRA Sunbury at SR-161â€"Merged	North	3	31.9	109.4	77.5	5.6	37.9	
105 Signal Corridor-D4-TRU SR-5/Elm at SR-82â€"Merged	North	0.9	41.3	116.3	75	7	46.2	
4 Signal Corridor-D7-MIA SR 55â€"Merged	West	2.9	30.3	103.1	72.8	6.6	40	
8 Signal Corridor-D8-HAM/CLE SR 125â€"Merged	South	5.7	37.4	110	72.6	10.8	39.4	
102 Signal Corridor-D11-BEL US-40 & CR-28Aâ€"Merged	West	5.4	29	100.8	71.8	3.7	25.7	
81 Signal Corridor-D12-CUY Miles Rd at I-480â€"Merged	North	2.8	43.8	107.9	64.1	17.1	48.2	
93 Signal Corridor-D8-WAR SR 741/Kings Millsâ€"Merged	East	2.1	56	119.5	63.5	25.7	53	
101 Signal Corridor-D8-CLE SR-28 at Guineaâ€"Merged	West	2.6	40.9	104.3	63.4	7.3	31.4	
18 Signal Corridor-D1-ALL SR-309â€"Merged	West	2.9	31.6	93.1	61.5	3.1	15.2	
17 Signal Corridor-D8-WAR SR 122â€"Merged	East	3	63.6	122.3	58.7	11	46.4	
16 Signal Corridor-D8-HAM Harrison Rdâ€"Merged	North	4.5	59.2	116.2	57	13.8	41.1	
86 Signal Corridor-D12-LAK US 20â€"Merged	North	3	44.4	101.4	57	5.2	18.7	
56 Signal Corridor-D6-FRA SR 3 at Parisâ€"Merged	East	4.3	54.7	110.7	56	18.4	43.4	
116 Signal Corridor-D8-HAM/WAR Fields Ertel at Mason Motâ€"Merged	North	13.3	67.2	122.3	55.1	17.8	53.8	
25 Signal Corridor-D4-MAH US 224 BoardmanMerged	North	8.5	51.4	105.5	54.1	19.6	40.7	
109 Signal Corridor-D7-MOT Austin Blvdâ€"Merged	South	2.2	61.9	115.6	53.7	33	57	
117 Signal Corridor-D11-JEF SR 7/213Merged	South	1.3	53.7	104.9	51.2	5.7	54.8	
21 Signal Corridor-D2-LUC US-20â€"Merged	East	4	53	102.8	49.8	9.3	28.8	
53 Signal Corridor-D4-STA Portage StMerged	North	7.9	55.6	101.6	46	24.9	29.9	
108 Signal Corridor-D8-CLE Wards Corners at I-275â€"Merged	North	4.5	60.2	104.7	44.5	11.9	22.6	
38 Signal Corridor-D3-MED SR 3â€"Merged	East	1.3	73.7	117.6	43.9	25.4	55.2	
10 Signal Corridor-D8-HAM US-22/SR-3 at Kenwood Rdâ€"Merged	South	9.3	72	114.5	42.5	29.8	39.9	
106 Signal Corridor-D12-CUY Rockside at I-271â€" Merged	North	2.1	60	101.7	41.7	14.2	26.6	
7 Signal Corridor-D8-HAM US 27â€"Merged	South	5	64.6	105.2	40.6	21.3	41.8	
46 Signal Corridor-D4-STA SR 687Merged	West	10.5	68.2	102.2	34	13.6	21.6	
48 Signal Corridor-D1-ALL SR 309 at SR 117â€"Merged	South	2.5	72.2	105.1	32.9	14.6	33.6	
	North	4.2	69.7	103.1	32.9	13.1	26.7	
2 Signal Corridor-D8-HAM 22NorwoodMerged	North	5.4	66.4	97.1	30.7	8.4	17.8	
55 Signal Corridor-D4-TRU SR 45 Champion TwpMerged		-						
107 Signal Corridor-D7-MOT SR 48â€"Merged	North	9.6	70.7	100.6	29.9	10	21.6	
9 Signal Corridor-D8-HAM US 22â€"Merged	West	6.3	77.3	106.5	29.2	31.9	40	
11 Signal Corridor-D8-HAM US-127 at I-275â€"Merged	North	1.8	74.5	102.7	28.2	28.3	36.3	
75 Signal Corridor-D5-COS US 36Merged	West	4.8	75.9	100.6	24.7	12.8	21.7	
100 Signal Corridor-D11-COL SR-170â€"Merged	East	3.8	75.9	100.5	24.6	14.9	31.5	
19 Signal Corridor-D2-LUC SR-2â€"Merged	West	8.3	72.6	96.2	23.6	10.5	20.3	
26 Signal Corridor-D4-MAH US 224 CanfieldMerged	North	2.7	85.1	108.6	23.5	16.1	30.6	
27 Signal Corridor-D4-MAH OH 46 Austintown TwpMerged	North	6.7	71.8	95.2	23.4	15.2	30.1	
12 Signal Corridor-D8-CLE SR-28 at I-275â€"Merged	West	5.8	77.2	99.4	22.2	15.8	22.8	
115 Signal Corridor-D8-HAM/WAR Fields Ertelâ€"Merged	North	9.2	91.1	111.8	20.7	23.6	40.6	
91 Signal Corridor-D7-MOT SR 725 (Dayton Mall)â€"Merged	North	6.9	89.4	110	20.6	28.2	40.7	
60 Signal Corridor-D6-FRA US 62â€"Merged	North	13.3	86.1	105.6	19.5	25.7	35.6	
31 Signal Corridor-D2-WOO SR 795 Eâ€"Merged	East	4.3	80.9	99.9	19	9.4	19.2	
67 Signal Corridor-D5-FAI US 22 US 33Merged	North	3	79.9	98.9	19	6.5	11.4	
43 Signal Corridor-D3-RIC US 42 S of US 30â€"Merged	East	5.1	82.4	100.8	18.4	7.6	18.1	
30 Signal Corridor-D4-TRU SR 193 Liberty TwpMerged	North	5.7	84.6	101.6	17	15.3	26.4	
68 Signal Corridor-D5-FAI SR 256Merged	South	3.9	89.8	106.6	16.8	37.1	37.7	
14 Signal Corridor-D8-CLE SR-32â€"Merged	West	14	85.9	102.2	16.3	40.5	32.2	
58 Signal Corridor-D5-GUE SR 209Merged	North	8.4	80.9	96.9	16	12.3	20.2	

- Different Data
 Outputs
- Delta Median used to evaluate and prioritize

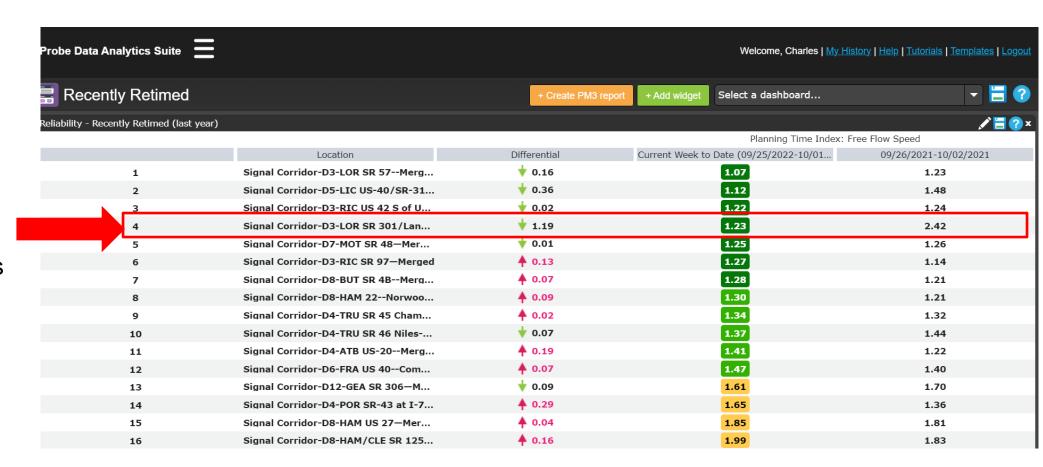
TRAVEL TIME RANKING



 Pre-loaded corridors allow us to evaluate Districts, Cities, MPOs

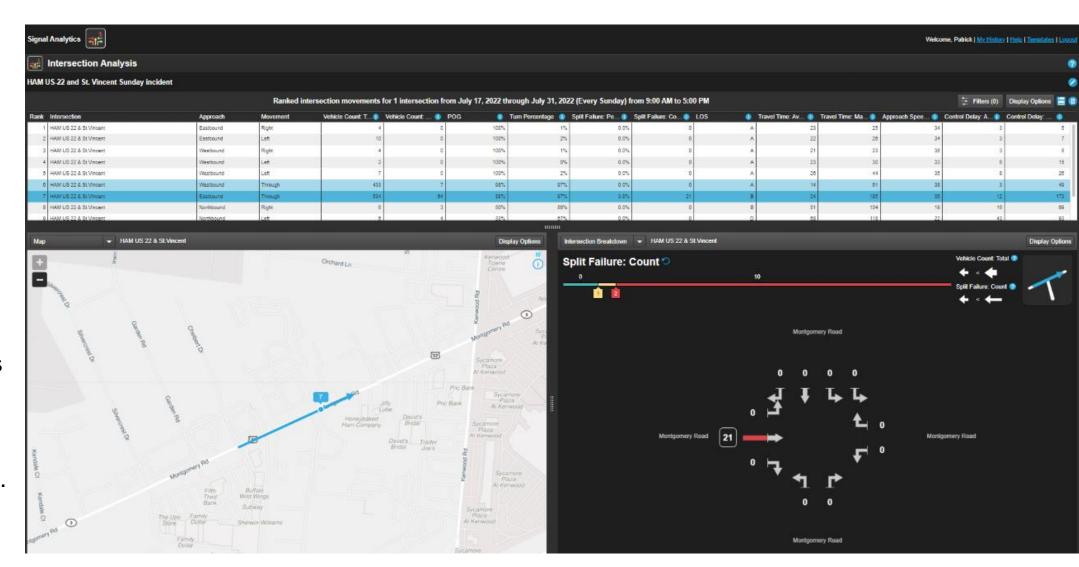
SIGNAL RETIMING SUCCESSES

- Post re-timing
 - Evaluate performances across all corridors retimed



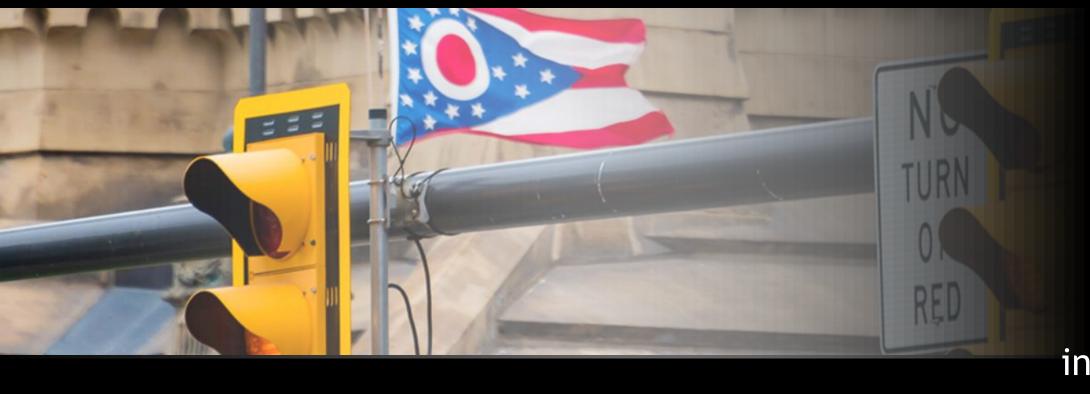
Foleum Cleveland

DASHBOARD: RECENTLY RE-TIMED


- Set it and forget it
- Planning Time Index
- Postimplementation: tells me quickly if the corridor needs investigation or tweaking

SIGNAL ANALYTICS

- Signal Data
 - Arrival on Green
 - SplitFailures
 - o LOS
 - o Delay
- Specific ranges of data
 - i.e., Every Sunday of past 2 wks.

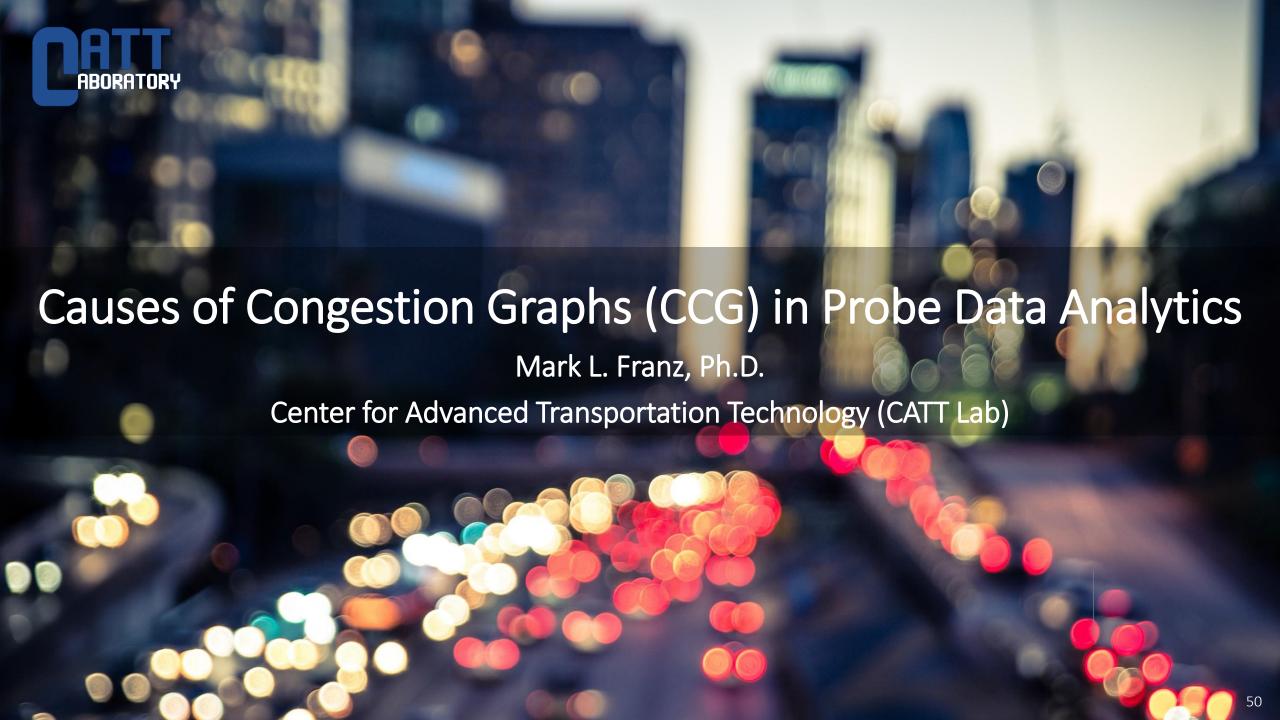


BENEFITS OF USING RITIS TOOLS

- Leverage new technology to improve safety = Meets SHSP
- Information-rich metrics
 - Daily Maintenance: Is the complaint validated?
 - o Pre-study: Where to study?
 - o Post-study: Is it continuing to perform well?
- Time/resource savings to ODOT
- Easier to communicate the plan by showing visuals of rankings
- More Tools to explore and use (Trend Map, Report Templates)
 - Visual storytelling

Thank You!

For more information



Causes of Congestion Tool Update

Mark Franz
Lead Transportation Analyst
UMD CATT Lab

Today's topics

- Motivation
- Goals and Objectives
- Data
- Methodology
- Demo, Use Cases, and Results

Motivation

- National study provided a much-needed update
 - Enabled monthly breakdowns of National, State, and County causes of congestion
 - Spatial Coverage: National Highway System (NHS)
 - Temporal Coverage: 2019
- Still a need to:
 - Enhance spatial coverage (i.e. non-NHS segments)
 - Enhance temporal coverage (2019 present with recurring updates)
 - Enable customized spatial and temporal analyses
 - Specific dates and hours of day
 - Specific road segments
 - Include agency incident and work zone data
 - Determine and display the top multi-cause categories for each query

52

Goals and Objectives

Develop a causes of congestion deep-dive tool that:

- 1. Includes non-NHS segments
- 2. Includes agency incident and work zone data
- 3. Enables additional (and more recent) temporal coverage
- 4. Provides functionality to drill down to specific dates, hours of day, and road segments
- 5. Provides access to updated results on a regular basis

We also modified the volume limiting equations in the UDC algorithm, which proved to produce more accurate volume estimates

Congestion Causes and Data Sources

Temporal Coverage: CY 2019 – July 2022*

<u>Spatial Coverage</u>: Any segment with 1-minute probe data and volume (only available to full RITIS partnering states Each state provided a volume prioritization strategy

Data Item	Data source
Congestion/Disruption	1-minute probe data (INRIX)
Recurrent Congestion	1-minute probe data (INRIX)
Incidents	Waze + Agency data
Weather	NOAA radar and Waze
Work Zones	Waze + Agency data
Holiday Travel	Holiday Calendar (including travel days before/after holiday)
Signals	OSM Traffic Signal Database
Multiple Causes	Combination of above
Unclassified Disruption	NA

^{*} August + September will be available in the upcoming weeks. Recurrent and automated updates are being developed

Increased Spatial Coverage by State

State	# NHS TMCs	# Non NHS TMCs	# Full Network TMCs
DC	1,079	2,546	3,625
FL	15,670	35,789	51,459
GA	11,197	19,837	31,034
IL	14,217	22,404	36,621
LA	4,787	6,740	11,527
MA	9,493	11,685	21,178
MD	6,735	11,793	18,528
MI	13,755	12,214	25,969
NC	9,660	21,962	31,622
NJ	9,929	17,215	27,144
OR	5,147	7,390	12,537
PA	15,541	20,316	35,857
RI	2,062	2,900	4,962
TN	7,975	8,345	16,320
VA	8,374	11,315	19,689

All TMCs require volumes to be available in CCG

Methodology Summary

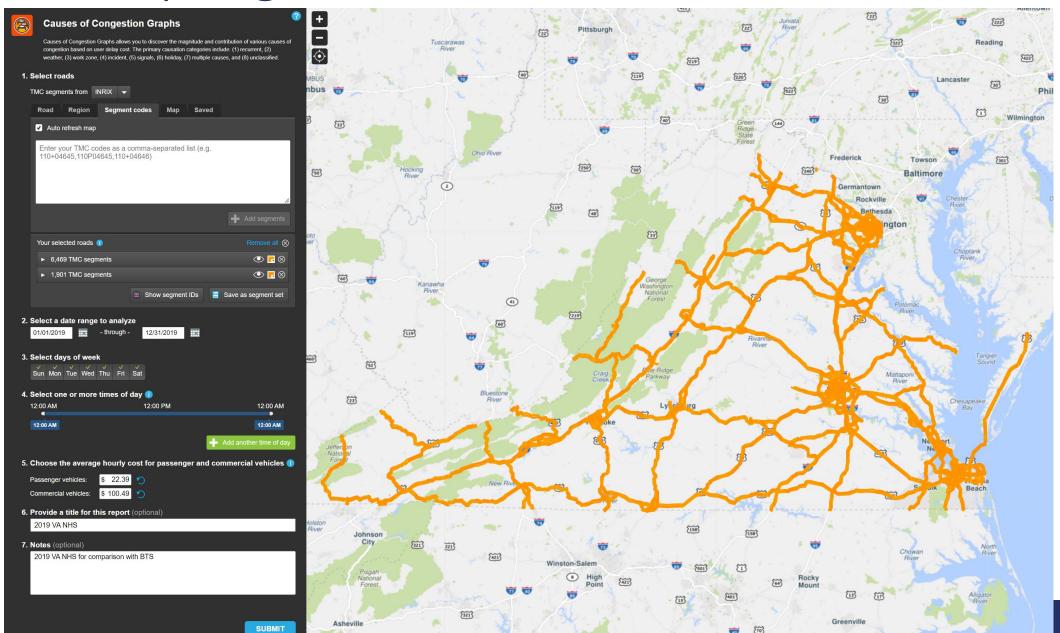
Step1: Identify

Discover when and where congestion occurs

Step 2: Quantify

Estimate the severity of congestion

A modified UDC process is used in the deep-dive tool



Match congestion to a specific cause


Agency incident and work zone data are included

Demo of Causes of Congestion Graphs (CCG) Tool

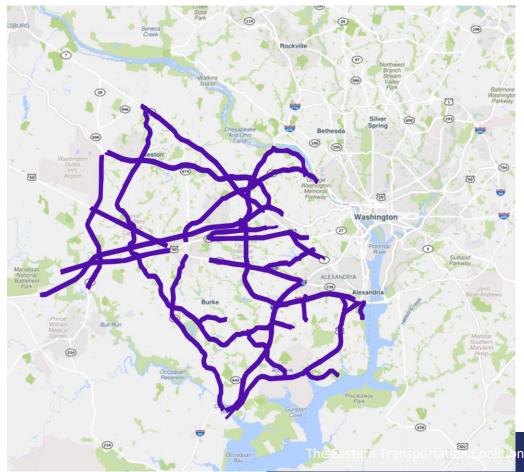
CCG Query Page

CCG Results Page

Use Case 1: Assess impact of agency incident + WZ data

Research Question: How does the addition of agency incident and WZ data change the results?

- Compare results for Fairfax County, VA in National Tool versus CCG Tool
 - Temporal Coverage: 2019, all days of week and all hours
 - Spatial Coverage: Fairfax County, VA NHS segments (841 TMCs)


Use Case 1: Assess impact of agency incident + WZ data

Cause	National Study Percent	CCG Percent	Difference
Recurrent	42.1%	30.4%	-11.6%
Signals	10.4%	17.6%	7.2%
Unclassified	13.7%	12.0%	-1.7%
Incidents	6.3%	6.3%	0.1%
Weather	2.0%	1.7%	-0.3%
Work Zone	0.7%	1.3%	0.6%
Holiday	1.3%	1.0%	-0.3%
Incidents & Recurrent	2.2%	4.3%	2.1%
Incidents & Work Zone	2.1%	3.7%	1.6%
Recurrent & Unclassified	Included in other multiple categories	2.7%	NA
Signals & Weather	1.5%	2.4%	0.9%
Incident & Weather	2.4%I	ncluded in other multiple categories	NA
Other Multiple Causes	15.4%	16.6%	1.2%

Use Case 2: Compare Results by Various Temporal Filters

Research Question: How do results differ when I filter for weekdays and daylight hours (7am-7pm)?

- Compare results for
 - All Days + All Hours VS Weekdays + All Hours VS Weekdays + 7am-7pm
 - Temporal Coverage: 2019
 - Spatial Coverage: Fairfax County, VA NHS segments (841 TMCs)

Use Case 2: Compare Results by Various Temporal Filters

Cause	All Days All Hours Percent	Weekdays All Hours Percent	Weekdays 7am-7pm Percent
Recurrent	30.4%	33.5%	37.5%
Signals	17.6%	16.0%	14.6%
Unclassified	12.0%	10.8%	7.8%
Incidents	6.3%	6.1%	5.7%
Weather	1.7%	1.4%	1.3%
Work Zone	1.3%	1.2%	0.7%
Holiday	1.0%	0.8%	0.5%
Incidents & Recurrent	4.3%	4.6%	5.2%
Incidents & Work Zone	3.7%	3.7%	3.3%
Recurrent & Unclassified	2.7%	2.9%	3.2%
Incidents, Recurrent &			
Weather	NA	NA	2.3%
Signals & Weather	2.4%	2.2%	NA
Other Multiple Causes	16.6%	16.9%	18.1%

Use Case 3: Discover Causes of Congestion for top bottleneck in MA

Research Question: What is the underlying cause of congestion for the top interstate bottleneck in MA?

- Temporal Coverage: April 2022
- Spatial Coverage: All MA Interstates (841 TMCs), then focus on top bottleneck + queue (25 TMCs)

Process:

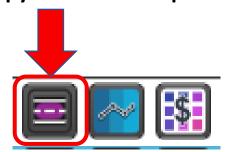
Step 1: Bottleneck ranking for MA Interstates in April 2022

- Identify bottleneck of interest
- Extract bottleneck + queue TMCs

Step 2: CCG query on bottleneck + queue TMCs for April 2022

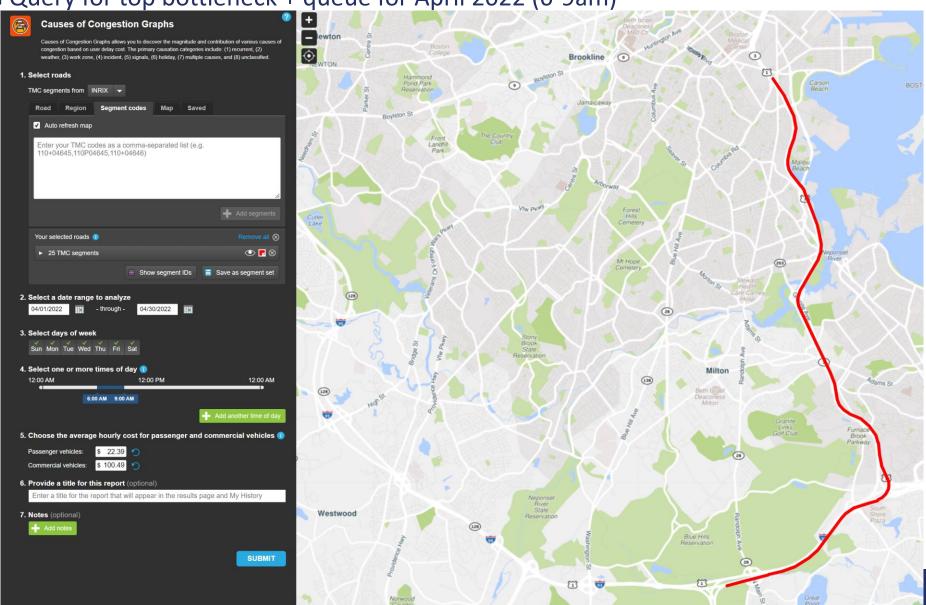
Use Case 3: Discover Causes of Congestion for top bottleneck in MA

Step 1: Bottleneck ranking for MA Interstates in April 2022

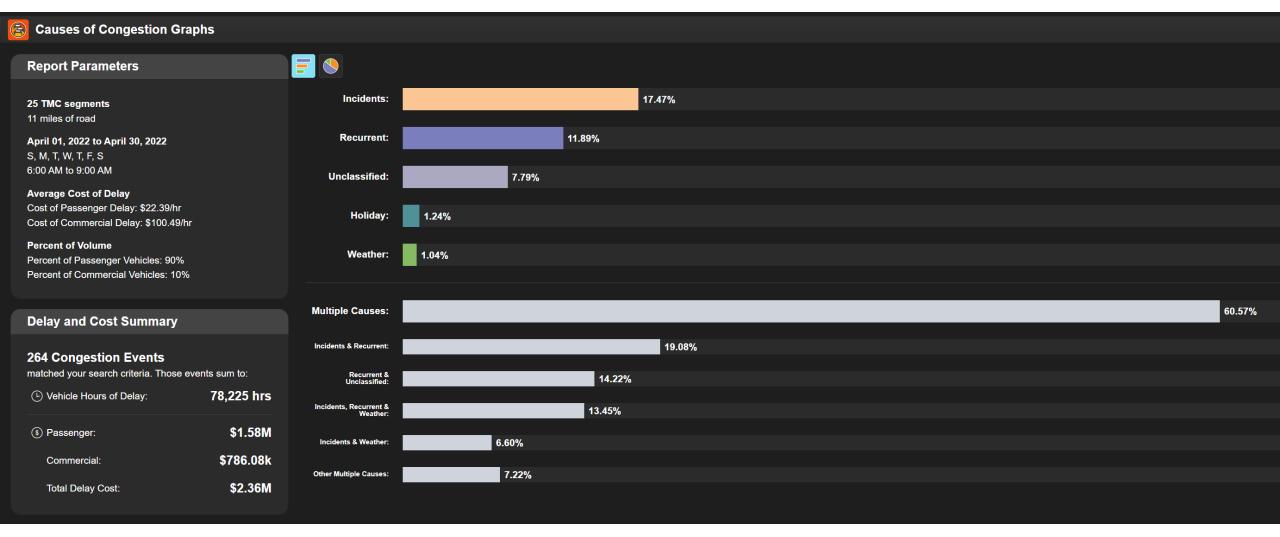

Top Bottleneck Map (including queue)

Top Bottleneck Head Location

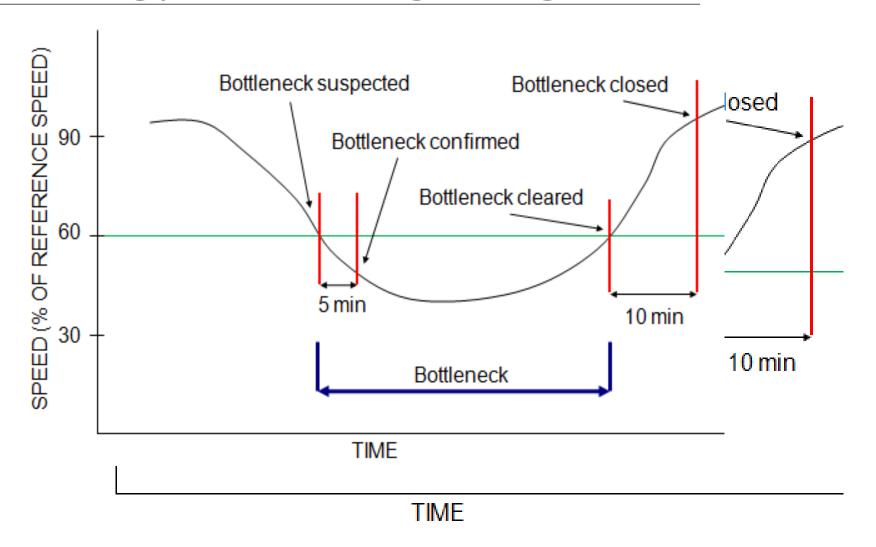
Rank	Мар	Head Location
1	✓	I-93 N @ SOUTHAMPTON ST/EXIT 16



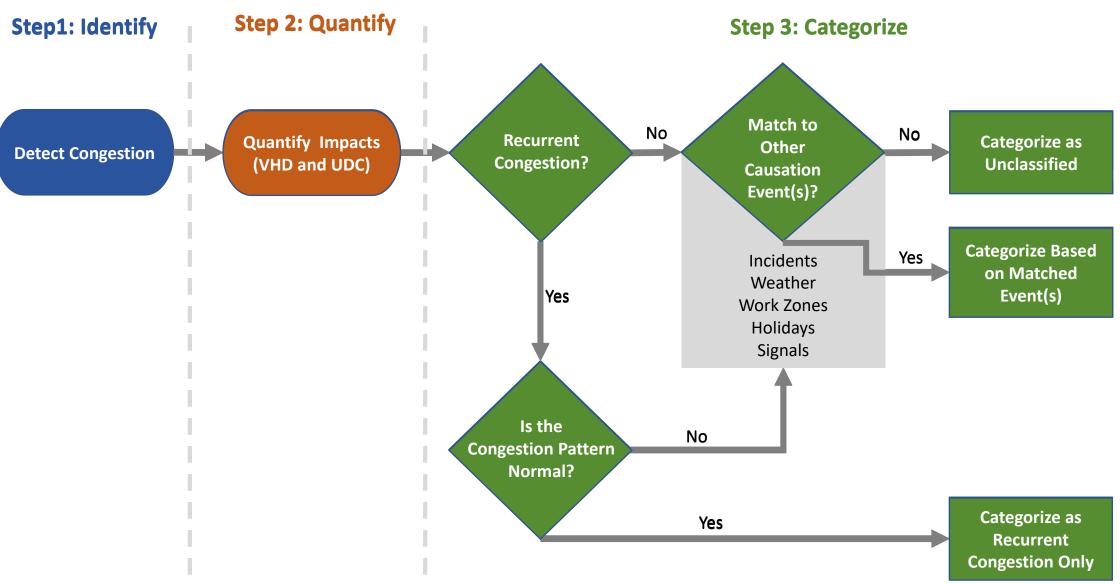
Button to copy bottleneck + queue TMCs



Use Case 3: Discover Causes of Congestion for top bottleneck in MA


Step 2: CCG Query for top bottleneck + queue for April 2022 (6-9am)

Use Case 3: Discover Causes of Congestion for top bottleneck in MA CCG Results



Methodology: Detecting Congestion

Lund, A., Pack, M.L., Plaisant, C., and Franz, M.L. Algorithms for Identifying and Ranking Bottlenecks Using Probe Data. Transportation Research Board 96h Annual Meeting. Washington, D.C. 2017.

Methodology Logic

Reminder to Update CCG Volumes

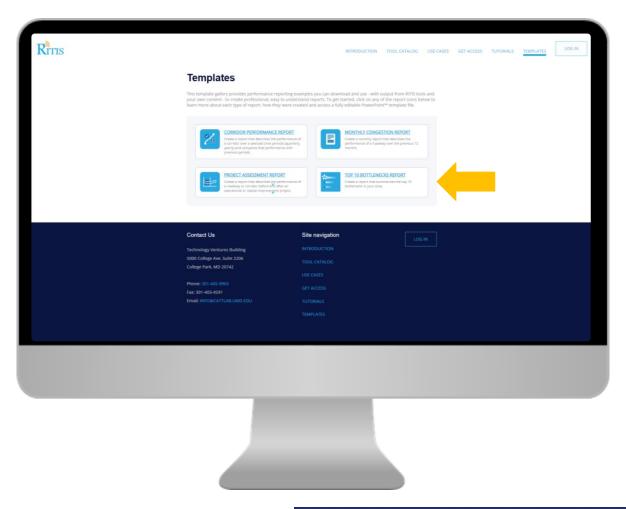
• Deadline to include updated volumes is October 1st every year

Questions?

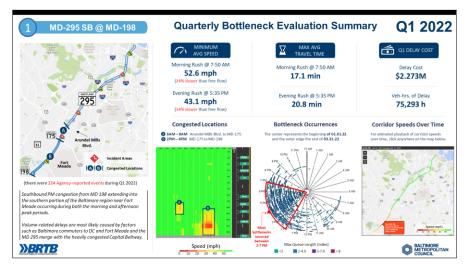
Mark L. Franz, Ph.D.

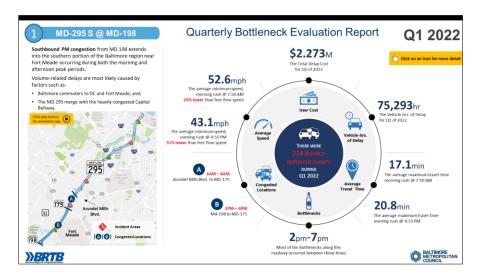
UMD CATT Lab

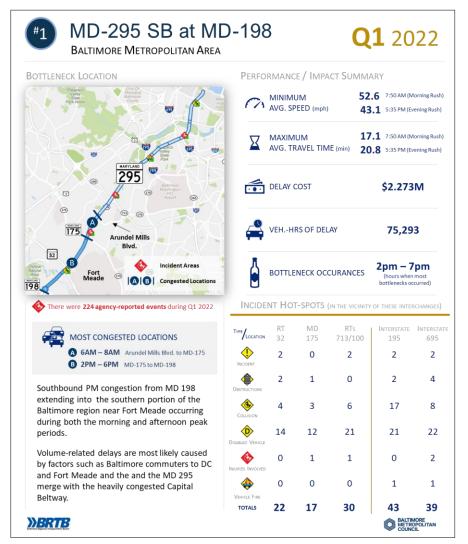
mfranz1@umd.edu



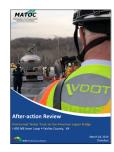
PDA Suite Performance Measures Working Group




Faculty Assistant, Outreach & Education
UMD CATT Lab


The Top 10 Bottlenecks package is now available on the RITIS Templates page...

There are several different options for creating a report best suited to your needs...

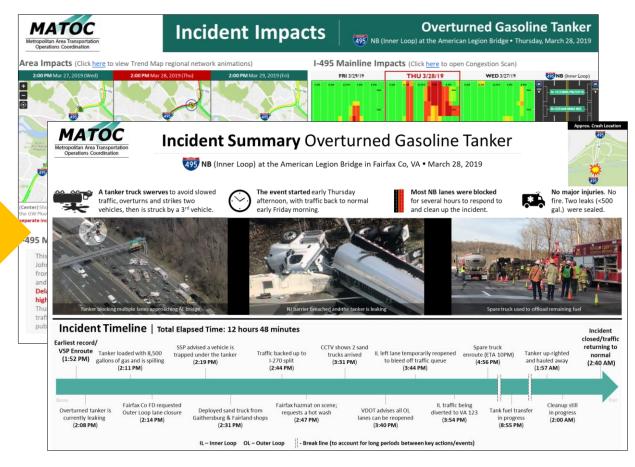

There are two template packages in the pipeline...

After-Action Review

After-action Review Report

Use this template package along with RITIS tool results to create an after-action review report, including front and back covers, an event high-level summary page and an impact evaluation page that graphically depicts mainline and regional impacts, delay costs, vehicle hours of delay, key takeaways, and more. There are also several use case examples with varying levels of event complexities and some more technical-oriented report examples.

Overview



1. Click to download the PowerPoint template to create a report that presents an evaluation summary of the top 10 bottlenecks in a region. Additional design resources are also available.

■ Download Template

Download Design Resources

- 2. Download Agency Use Case examples below to see how other agencies have used these templates or have created similar reports using content from RITIS:
 - MATOC Overturned Tanker Truck on the American Legion Bridge (using this template)
 - GDOT I-75 Pedestrian Fatality (executive-level template) 🗹
 - MATOC Vehicle Collision and Truck Fire on the Woodrow Wilson Bridge (1 technical, 3 executive templates) 🗹
 - massDOT Truck Bridge Strike I-95 SB at Exit 30B (incudes Trend Map animation) 🗹
- 3. Scroll down to learn how to create this report or click on the 'How To Create Report' in the navigational menu.

Holiday Travel Forecasts

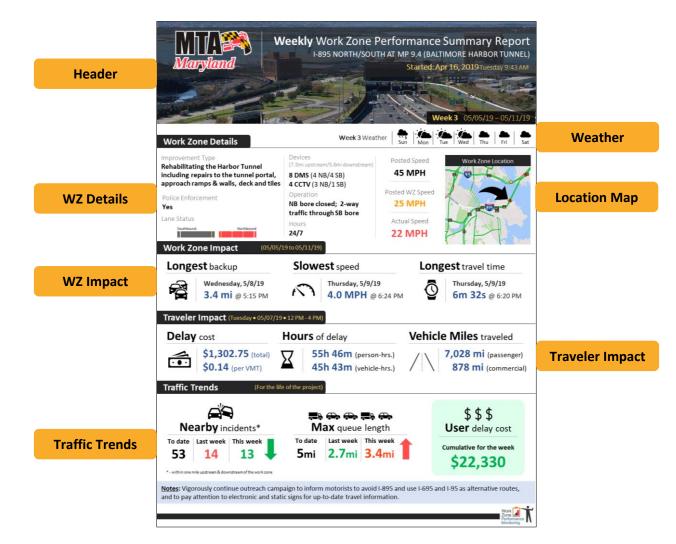
Holiday Travel Forecast Infographic

Use this template package along with RITIS tool results to create a holiday travel forecast infographic to share with the traveling public during major holidays with high levels of traffic, such as Thanksgiving and Labor Day. These infographic-style templates help communicate vital advisory information such as which hours are likely to be most congested, specific roadways that could be significantly impacted or higher than average accidents occurring on a particular day. These infographics, along with agency safety tips and travel service apps (like 511) can help provide drivers with a safer, more relaxing travel experience.

Overview

Click to download the PowerPoint template to create a report that presents a travel forecast infographic for a region.
 Additional design resources are also available to help build your document.

Download Template


■ Download Design Resources

- Download Agency Use Case examples below to see how other agencies have used these templates or have created similar reports using content from RITIS:
 - MDOT 2022 Labor Day Travel Forecast (6-day infographic, using this template) 🗹
 - MDOT 2022 Labor Day Travel Forecast (6-day infographic) 🗹
 - MDOT 2022 4th of July Travel Forecast (5-day infographic) 🖪
 - MDOT 2022 Memorial Day Travel Forecast (6-day infographic)
 - GDOT 2021 New Year's Eve Travel Forecast (7-day infographic)
 - GDOT 2021 Thanksgiving Travel Forecast (7-day infographic+public messaging) ☑
 - MDOT 2021 Thanksgiving Travel Forecast (6-day infographic)
 - Baltimore Metropolitan Council 2016 Thanksgiving Travel Forecast (7-day infographic + public messaging)
 - * Baltimore Metropolitan Council 2016 Labor Day Travel Forecast (webpage messaging) [2]
 - * Regional Transportation Commission of Southern Nevada multiple holiday travel forecast examples 🗹
- 3. Scroll down to learn how to create this report or click on the 'How To Create Report' in the navigational menu.

We will be scheduling a Performance Reporting Working Group meeting to...

- Review/approve the Holiday Travel
 Forecast template package content
- Work on developing a Work Zone templates package
- Brainstorm other template ideas

Reminder RITIS Workshop

RITIS Workshop

Session 3 Creating an Effective **After-action Review Report**

When: November 17, 2022 • 1:00 pm to 2:15 pm (ET)

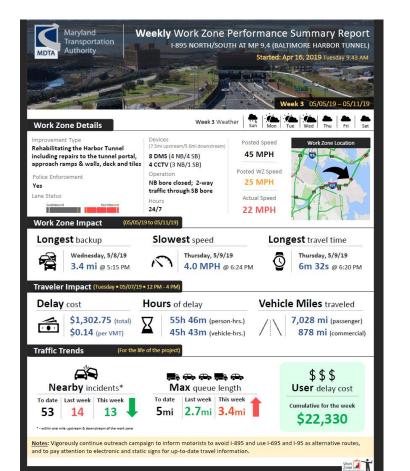
Register for this workshop at: https://t.e2ma.net/click/8kftax/s4br02cc/cwmlv7f

RITIS Product Enhancement Working Group

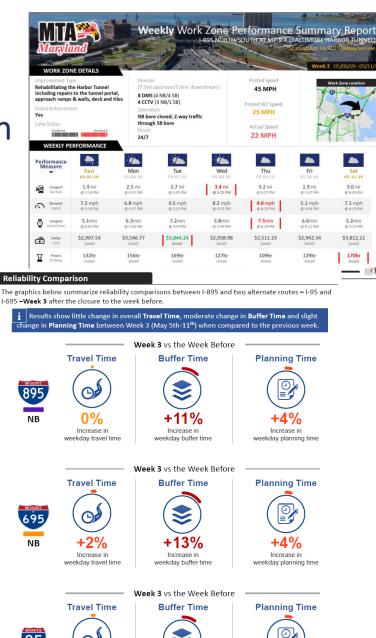
Bob Frey,Director of Project-Oriented Planning
Massachusetts DOT

Enhancement Priorities through June 2023

RITIS Enhancement Working Group Funds will support:


Enhancement	Estimated Cost	
Sharing of Dashboard Reports	\$125k	
Automated Work Zone Reports Scoping	\$25k	
Aerial Photography in RITIS Maps	\$10k	
Additional Reporting Templates	\$35k	
Speed Tile Layers	\$30k	
Causes of Congestion Enhancements	\$50k	
Total =	\$275k	


Other funds (grants) will support


Enhancement	Estimated Cost
Freight Movement & Safety Avoidance Analytics	\$1M+
Safety Analytics (police crash reports) Partially funded	~\$250k
Signal Analytics Enhancements	\$TBD
Trips Analytics Enhancements	\$TBD
Energy Analytics Geographic Expansion	TBD
Speed Bins Visualization (time permitting)	\$75k
Total =	\$\$\$

Automated Work Zone Reporting

- Range of complexities and possibilities for automation
- Will produce designs with UX team and then develop LOE.

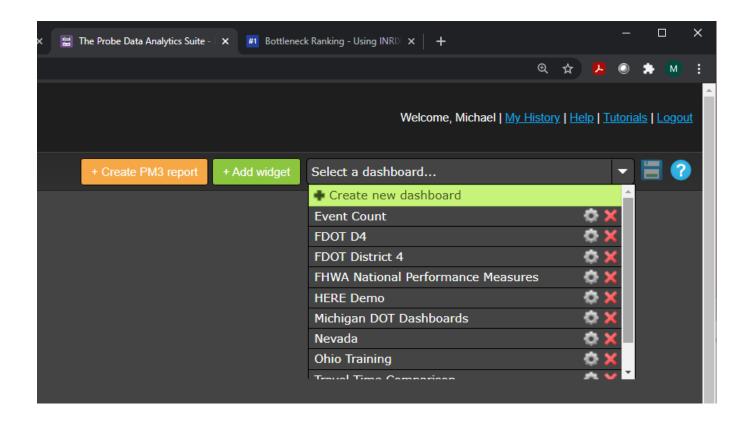
Increase in

weekday buffer time

Travel Time - the time it takes to drive along a stretch of road

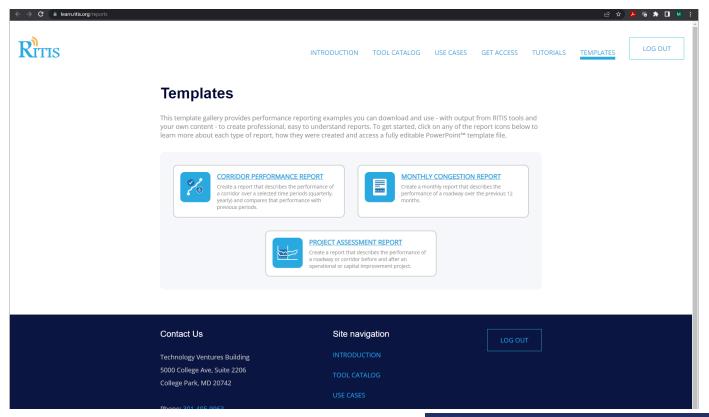
Ruffer Time - the extra time you must add to a trip to ensure an on-time arrival

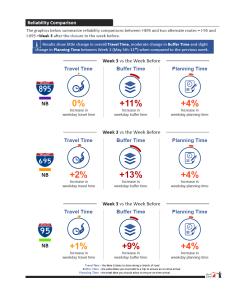
Increase in

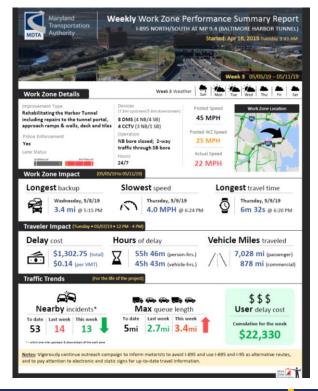

weekday travel time

Increase in

weekday planning time

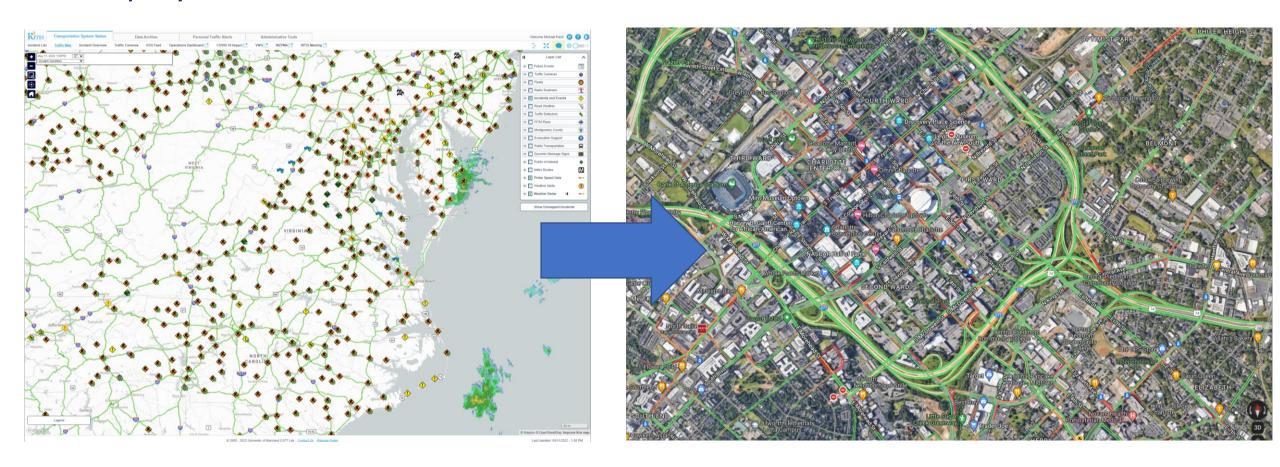

Sharing of Dashboards and Reports


Sharing with members of your organization



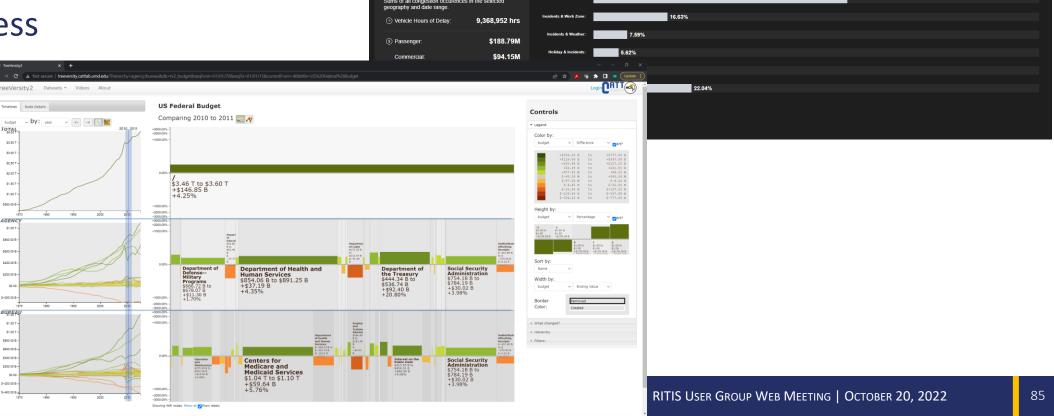
Build additional Reporting Templates

- Build-out of new templates (and detailed creation tutorials) for a wide range of DOT/MPO needs.
- In-progress



Aerial Photography in RITIS Maps

Deployed 9/20/22

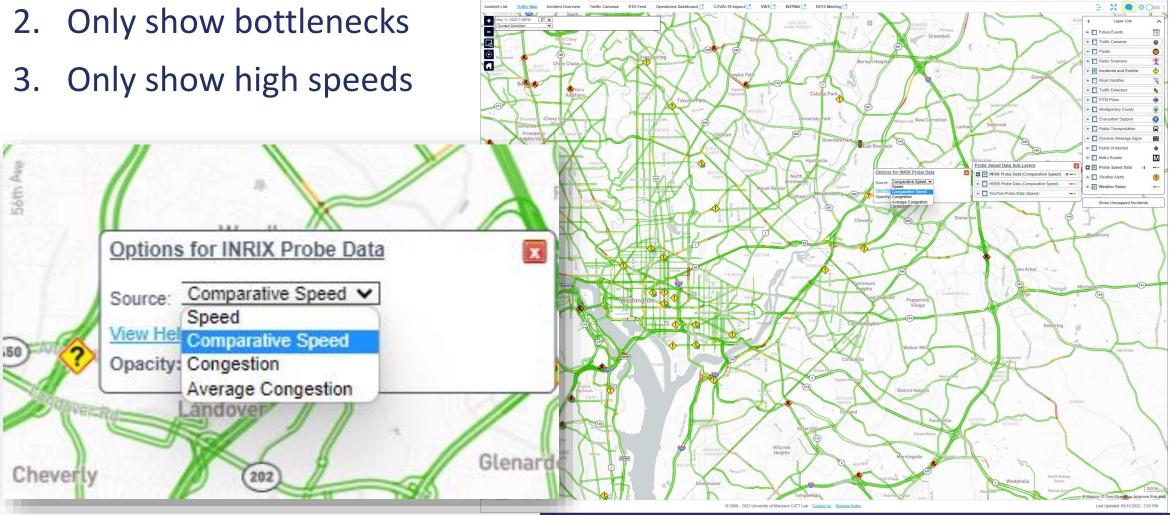

Causes of Congestion: Enhancements & Analysis

Report Parameters

Cost of Passenger Delay: \$22.39/hr

Delay and Cost Summary

- Additional Filtering & Drill-down Capabilities
- Better Visualizations for Trend Analysis / Comparison
- In-progress


Holiday: 0.58%

300

New Speed Tile Layer Options:

1. Only show congestion (hide green)

Only show bottlenocks

Enhancement Priorities through June 2023

RITIS Enhancement Working Group Funds will support:

Enhancement	Estimated Cost	
Sharing of Dashboard Reports	\$125k	
Automated Work Zone Reports Scoping	\$25k	
Aerial Photography in RITIS Maps	\$10k	
Additional Reporting Templates	\$35k	
Speed Tile Layers	\$30k	
Causes of Congestion Enhancements	\$50k	
Total =	\$275k	

Other funds (grants) will support

Enhancement	Estimated Cost
Freight Movement & Safety Avoidance Analytics	\$1M+
Safety Analytics (police crash reports) Partially funded	~\$250k
Signal Analytics Enhancements	\$TBD
Trips Analytics Enhancements	\$TBD
Energy Analytics Geographic Expansion	TBD
Speed Bins Visualization (time permitting)	\$75k
Total =	\$\$\$

Agency Input Session

Matt Glasser
National TSMO Account Lead
Arcadis
RITIS User Group Co-chair

Agency Input – Polling and Open Discussion

Please type your answers under each question in the pop-up box.

Poll 2 - What frustrates you the most with using RITIS tools (including PDA, Trip Analytics or Signal Analytics)?

Poll 3 - What do you like the best about using RITIS tools?

Poll 5 - What kinds of things are you currently doing with RITIS - Planning/Ops, presentations, project/funding justification, etc.- that you'd be willing to share at a future meeting?

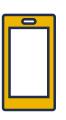
Poll 4 - What features or functionality, if added to RITIS, would make your life easier?

Poll 6 - What are some examples of important things your agency wants to know, that you wish RITIS could help answer?

We want to hear from you!

- All features and functionality are driven by state/mpo users.
- You are welcome to join any of our User Groups / Working Groups / Listening Sessions to brainstorm/define these new features and functionality.
- You can also type your comments to us today either in the Q&A box or with an email to <u>support@ritis.org</u>

Wrap Up



Matt Glasser
National TSMO Account Lead
Arcadis
RITIS User Group Co-chair

Questions?

		/TETAL
Danica	Marko	w (TETC)
DCI113C	IVIAI NO	VV (ILIC)

dmarkow@tetcoalition.org

301.789.9088

Joanna Reagle (Logistics)

jreagle@kmjinc.com

610.228.0760

Michael Pack (CATT Lab)

PackML@umd.edu

RITIS Tech Support

support@ritis.org

PDA Suite Tech Support

pda-support@ritis.org

Thank you!

