What States Need to Do upon Return to their Home Agencies

Wednesday, June 22, 2016

Josh Johnson
Director R&D - SwRI
Intelligent Systems Dept.
+1.210.522.2877
josh.johnson@swri.org

Agenda

- State of Autonomous Vehicle Technology
- DOT Roles for a Successful CAV Deployment

Automated Vehicle Technology Evolution

- First RC vehicles used in 1930s
- FHWA's Automated Highway System in the 1990s, and demo in 1997.
- DARPA Urban Challenge (on-road automated driving) in 2007.
- Demonstration on the streets of Manhattan, NYC at the 2008 World Congress
- U.S. DoD Investment
- Google's Demos/Efforts
- Aggressive Marketing Campaigns leading to announcements by OEMs of their plans for production.

NHTSA / SAE Driving Levels

- Partially
 Automated
 Driving exists
 today
- Autonomy limited to specific driving environments
- Requires human fallback
- SAE and NHTSA levels different

							Source: SAE		
	SAE	SAE name	SAE narrative definition	Execution of steering and acceleration/ deceleration	Monitoring of driving environment	Fallback performance of dynamic driving task	System capability (driving modes)	BASt level	NHTSA level
4	Human driver monitors the driving environment								
	0	No Automation	the full-time performance by the human driver of all aspects of the dynamic driving task, even when enhanced by warning or intervention systems	Human driver	Human driver	Human driver	n/a	Driver only	0
	1	Driver Assistance	the driving mode-specific execution by a driver assistance system of either steering or acceleration/deceleration using information about the driving environment and with the expectation that the human driver perform all remaining aspects of the dynamic driving task	Human driver and system	Human driver	Human driver	Some driving modes	Assisted	1
	2	Partial Automation	human driver perform all remaining aspects of the dynamic driving task	System	Human driver		Some driving modes	Partially automated	2
_	Automated driving system ("system") monitors the driving environment								
	3	Conditional Automation	the driving mode-specific performance by an automated driving system of all aspects of the dynamic driving task with the expectation that the human driver will respond appropriately to a request to intervene	System	System	Human driver	Some driving modes	Highly automated	3
	4	High Automation	the driving mode-specific performance by an automated driving system of all aspects of the dynamic driving task, even if a human driver does not respond appropriately to a request to intervene	System	System	System	Some driving modes	Fully automated	
	5	Full Automation	the full-time performance by an automated driving system of all aspects of the dynamic driving task under all roadway and environmental conditions that can be managed by a human driver	System	System	System	All driving modes		3/4

Who is Developing Autonomous Vehicle Capabilities

(list may incomplete because information is not openly shared – some proprietary efforts)

- US OEMs:
 - GM
 - Ford
 - Tesla
- European:
 - Mercedes
 - BMW
 - Audi
 - Volvo
 - Renault
 - Scania (trucks)
 - Jaguar Landrover
 - Deihl
 - RUAG
 - Rheinmetall Defence

- Japan:
 - Nissan
 - Honda
 - Toyota
 - Hino
 - Isuzu
 - Yamaha
 - Yanmar
- Tier 1 Suppliers:
 - Bosch
 - Continental
 - Delphi
 - Denso
- Tech Companies:
 - Google
 - Apple

- US non-OEMs:
 - Lockheed Martin
 - Southwest Research Institute (SwRI)
 - Smaller Defense Contractors:
 - TORC, GDRS, ASI, etc.
 - University Research:
 - CMU, Stanford, VTTI, California PATH, UMTRI/MTC, Princeton, and others
- Government (non DoD)
 - US:
 - Human Factors for Vehicle Highway Automation
 - USDOT Automation Program
 - European Union:
 - CitiMobil and CyberCars
 - Safe Road Trains for the Environment (SARTE)
 - Energy ITS Project (Japan)

State of the Practice: Commercial (Google)

- Pros
 - Well funded
 - Previously only freeway
 - Advancing arterial capability

Source: Google

- Cons
 - Expensive sensor suite
 - Must pre-drive route
 - Requires high precision map database
 - For the U.S. less than 10,000 km of the 6.4M kms of highway "mapped"

Source: Google

Google's Change in Direction

- In May 2014 Google revealed a prototype of its latest driverless car:
 - No steering wheel
 - 25 mph
 - No breaks start/stop button
- Platform developed from scratch

Google says the car's most important feature is its

safety.

- ~100 prototypes
- Available for purchase by 2020

Other non-auto companies are developing

State of the Practice: Agriculture (John Deere)

 Constrained environment

- GPS effective in environment
- Limited obstacle avoidance

Source: John Deere

State of the Practice: Mining (Komatsu)

Fixed route – GPS
 Obstacle detection
 Very dirty conditions

defined

Source: Komatsu

State of the Practice: Military (Unmanned Support)

- 2000: Goal 1/3 automation in fleet by 2015
 Lighten soldier's loads
- Reduced exposure to unsafe environments Automate re-supply.

Source: Lockheed Martin

State of the Practice: Military (Oshkosh)

Source: Oshkosh

State of the Practice: Military (DSAT)

State of the Practice: Military (Weather)

- Material classification
- Snow and ice environments

 "New" environment to the system

Short Summary of AV Technology

- State of Technology:
 - Semi-Autonomous: Available today
 - Full Autonomy: Not yet...
- Connected Autonomy: A likely reality
- Short Term: Adopting connected vehicles (V2V and V2X) is preparing for autonomous vehicles

DOT Roles for a Successful AV Deployment

How will mapping data be handled?

How will mapping data be handled?

"It is clear that the industry needs a new kind of intelligent sensor – a "live map" that provides the vehicle with an awareness of the road environment beyond the reach of its other on-board sensors." – HERE

Rumor: Google's reason for advancing AV technology

Source: HERE

Roadway Data:

- Delivered in "real-time"
- Centimeter lane level accuracy
- GPS, photo, and point cloud
- Petabytes of data

How will mapping be handled?

Challenges

- Real-time updates to:
 - Changes in roadway infrastructure
 - Road closures
 - Conditions
 - Construction lane changes
- Distributing large data set on a national scale in real-time
- HERE financially backed by Audi, BMW, and Daimler

Source: HERE

Source: Google

How will mapping be handled?

Your Data Will Have Value

- Traffic data for public: <u>"Nice to have"</u>
- Roadway map data for AVs: <u>"Must have"</u>
- New roadways require pre-mapping
- Capturing and real-time distribution of map data:
 - Complex and expensive
 - Commercial sector moving
- Conclusion: Commercial sector managed

Actions to Consider:

- Short-term: Build relationships and partnerships
- Short-term: Commoditize or find a value proposition
- Medium-term: Plan to allow mapping providers advanced access to new roadways

June 22, 2016

How will traffic operations change?

- Proposed HERE real-time environment data:
 - Construction
 - Traffic congestion
 - Lane closures
 - Accidents
 - Weather-related changes
 - Variable traffic regulations
- Who is the best source of this kind of data?
 - You are! (DOTs)
 - Monitor for events
 - Verify events
 - Know when events clear

How will traffic operations change?

Autonomy Sensors dual-purposed

- Detect accidents
- Report traffic conditions
- Find potholes

Traffic operations information sources

- Current: DOT managed
 - 911, DOT sensor networks
- Future: Vehicles as probes
 - Auto OEMs, Google (Waze), etc
 - CV Infrastructure (V2X)

Actions to Consider (All short-term):

- Be ready for more trends like Waze
- A consortium of many states might get an auto OEM's attention (hint)
- Research ways to communicate construction
- Use analytics to parse big data

What changes need to be made to the roadway infrastructure?

- Building our way out of congestion: Does this problem go away?
 - Obtain 3,000, 4,000, or more vehicles/hour/lane?
 - Some say even more and some say no...
 - Can we narrow lanes?
 - Reduced accidents translates to less capacity to handle nonrecurring congestion
 - Transition period: mixed autonomy and human driven vehicles
 - Efficiencies will be hard to gain
 - "Technology Lanes" Next evolution to HOV and express-lanes

Actions to Consider:

- Medium-term: Planning to facilitate technology lanes
- Long-term: Planning requires a full understanding of autonomous vehicle throughput / density
 - Research of autonomous vehicle throughput / density needs further funding

What changes need to be made to the roadway infrastructure?

What about roadway signage?

- Expensive
- Delivery mechanism not verifiable
 - Perception in poor conditions (weather)
 - Visually occluded
 - Knocked over

Actions to Consider:

- Short-term:
 - Dynamic content: Adopt Connected Vehicles travel advisory messages (TAMs)
 - Static content: Likely handled by mapping firms. Will DOT deploy "virtual signs"?
- Long-term: maybe no physical signs

What changes need to be made to the roadway infrastructure?

Does lane stripping, centerline markers, and other road markings matter?

Now: Yes!

Future: Probably not...

Actions:

- Short-term: Road markings are important.
- Long-term: a future of no markings (or barriers?)

What are the security implications?

Automobile Security

- 200+ electronic control units
- 100M lines of code
- Multiple suppliers
- Cars are complex...

Attack Surfaces of AV/CV Environment

- Vehicle
- Wireless communication
- DOT infrastructure

Actions to Consider:

- Short-term: Build a culture of cybersecurity into your agencies.
 - Treat it like Safety.
- Short-term: Take steps to secure your ITS infrastructure

How do I handle the policy and legal issues?

Abusing autopilot functions

- Cannonball Run with a Tesla S
 - October 2015
 - L.A. to NY under 58 hours (including charging)
 - 96% autonomous mode
 - Speeds up to 90 mph
- A matter of time...

Actions to Consider:

- November 7, 2000
- For the Long-Term: Stay the course
 - begin with the end in mind.

How soon is full automation?

"Deer in the headlights" (need 80 meters visibility)

- "Realistic" (aggressive) driving
 - June 2014 in DC
 - Taxi "strike"
 - How to "nose" into traffic (30 min)

 50/50 odds my 2 year old could get an autonomous ride home from high school soccer practice

To prepare for a future of autonomy, embrace connected-vehicles

Thank you!

Josh Johnson
Director R&D – SwRI
Intelligent Systems Dept.
+1.210.522.2877
josh.johnson@swri.org