

TSMO Webinar – Managing Arterials:

Three Case Studies from a Statewide to City perspective

August 22, 2019

Welcome and Introductions

Denise Markow, PEI-95 Corridor Coalition *TSMO Director*

Agenda

10:30 am to 10:40 am	Welcome and Introductions	Denise Markow, I-95 Corridor Coalition
10:40 am to 11:00 am	10 years of Transit Signal Priority: Lessons Learned in New York City	Emad Makarious, New York City DOT
11:00 am to 11:20 am	Arterial Management Toolkit: Experiences from Washington, DC	Soumya Dey, District DOT
11:20 am to 11:40 am	Florida's Statewide Arterial Management Program (STAMP)	Raj Ponnaluri, Florida DOT
11:40 am to 12:00 pm	Wrap Up	Denise Markow, I-95 Corridor Coalition

I-95 Corridor Coalition Sponsored Event

Introductions

Emad MakariousNew York City DOT *Administrative Engineer*

Soumya Dey
District DOT
Associate Director

Florida DOT

State Connected Vehicles and
Arterial Management
Engineer

10 years of Transit Signal Priority: Lessons Learned in New York City

Emad Makarious, PE, PTOE

New York City DOT

10 years of Transit Signal PriorityLessons Learned in New York City

TSMO Webinar: Managing
Arterials

Thursday, August 22, 2019

Presented by:

Emad Makarious P.E., PTOE

Administrative Engineer

New York City Department of Transportation Division of Traffic Operations 34-02 Queens Boulevard Long Island City, New York 11101

Agenda

- SBS Features.
- City-Wide Wireless Network (NYCWiN)
- TSP Treatments
- Implementation Activities
- Present and Future TSP Corridors
- Maintenance of TSP Operations

Traffic Signals in New York City

New York City has more than 45,000 Intersections

13,560 Signalized Intersections

120,000 Pedestrian Signals

 100-120 new Traffic Signals installed every year based on Warrant Studies

Public Transit in NYC

- 5,700 buses operating on 2,800 miles of routes
- 300+ Bus Routes
- Over 2 Million daily riders
- Public transit system operated by MTA NYC Transit
- Streets and traffic signals operated and maintained by NYCDOT

+Select bus service

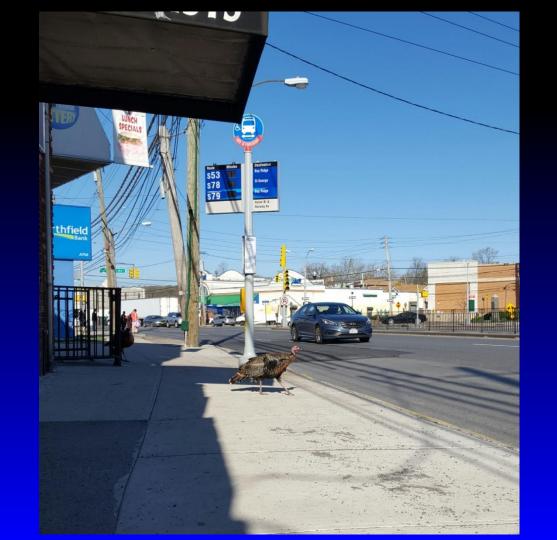
Branding

Bus Lanes

Off-board Fare Collection

New Bus Shelters

All Door Boarding

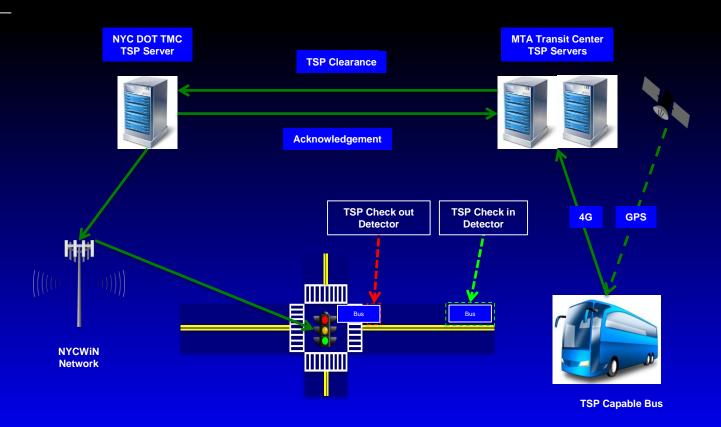

Bus Bulb Stations

Real Time Passenger Information

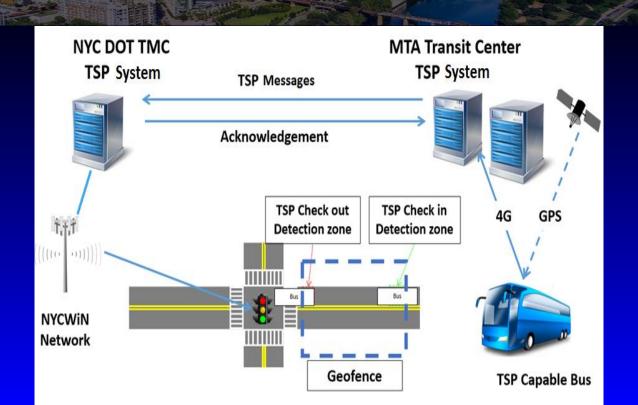
Transit Signal Priority (TSP)

City-Wide Wireless Network (NYCWiN)

A new city-wide network (NYCWiN) has been installed by NYC's Department of Information **Technology and Telecommunications (DOITT)** which provides access for both stationary devices (traffic controllers, video cameras and emergency call boxes) and moving vehicles (emergency services - NYPD and NYFD) applications, including Transit Signal Priority (TSP).

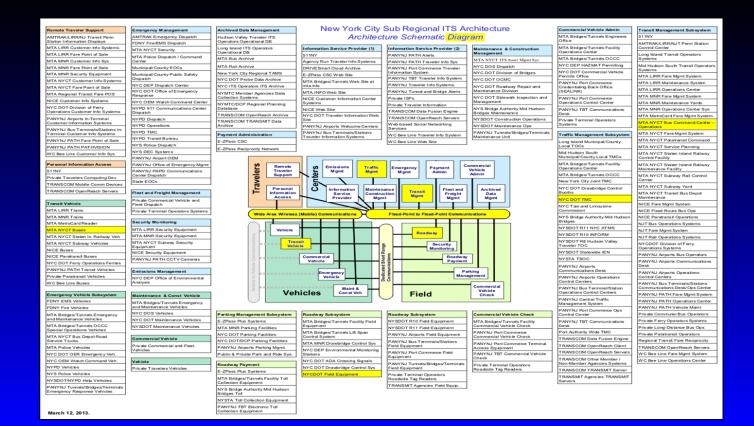

Benefits of NYCWiN for TSP

 Eliminates need for infrastructure changes to traffic controllers

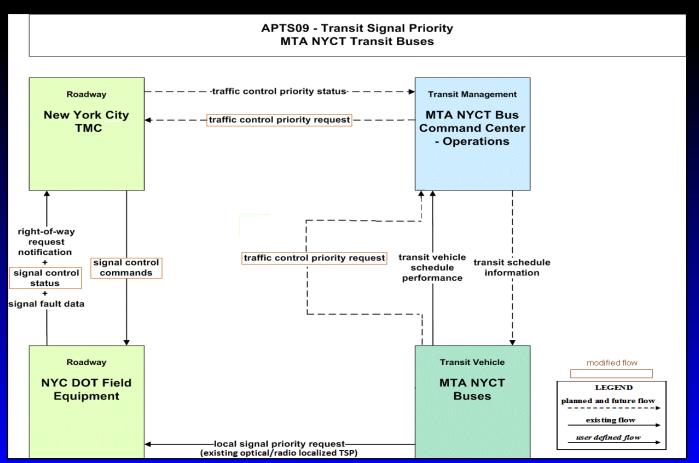

 Requires only in-vehicle systems – GPS modem and computer to locate vehicle's position

 Cost effective for citywide use of TSP!

CENTRAL TSP DEPLOYMENT



I. System design conforms with regional requirements – central TSP module

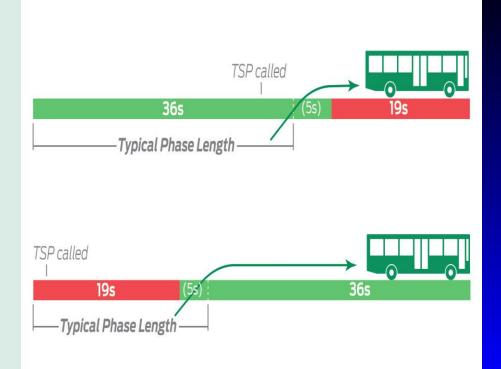


Portion of the NYC Sub Regional ITS Architecture Covered by the Transit Signal Priority Project

"Transit Signal Priority project - Subsystems are highlighted"

APTS09 - Transit Signal Priority

I. Signal design for central TSP module - Key Policies and Treatments (2-1)


1. TSP Treatments:

- Green Extensions
- Red Truncations (Early Green)
- Queue Jumps
- 2. Maintain coordination

3. Maintain minimum requirements for pedestrians based on 2009 MUTCD

(Manual on Uniform Traffic Control

(Manual on Uniform Traffic Control Devices)

I. Signal design for central TSP module - Key Policies and Treatments (2-2)

- 4. TSP calls recognized only within predefined detection zones upstream of each intersection
- 5. Door switches
- 6. First Come, First Served
- 7. TSP duration varies by intersection

Existing Conditions – Data Inputs

Network Data	Bus Data
Aerial photographs	Bus routes and schedules
Physical inventory	Passenger on and off counts
Signal phasing and timing	Bus stop placement
Turning movement counts and vehicle occupancy	Bus travel times
Pedestrian counts	Bus dwell times
Photo inventory	Traffic speed runs and side street queues

Software used to simulate and analyze plans for Transit Signal Priority (TSP) along the M15 SBS Route:

- Synchro© macroscopic model to identify/correct existing problems and optimize signals and coordination for TSP
- Custom Aimsun© microscopic traffic simulation model for NYCDOT to compare traffic operations for:
- Existing conditions
- Improvements + Optimal signal timings for all traffic (Passive TSP)
- Improvements + Optimal timings + TSP (Active TSP)

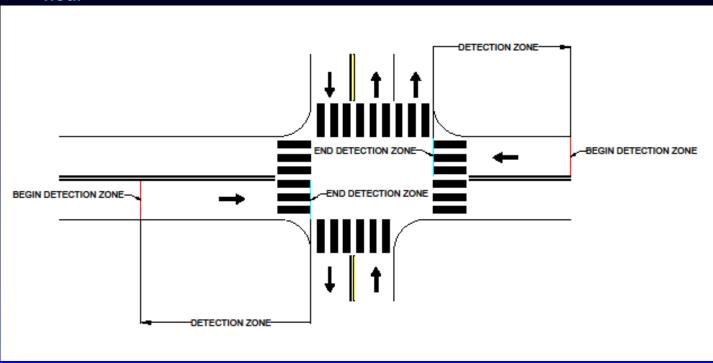
Modeling performed for AM, Midday and PM peak periods

Constraints

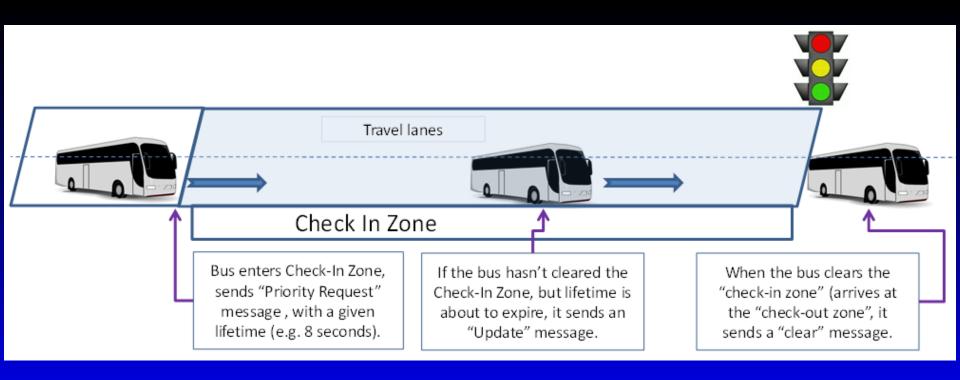
- Pedestrians, seniors
- Coordination
- Capacity
- Cross-street traffic
- Bus stops
- Other corridor traffic

"Before" and "After" Conditions

"Before" Conditions:

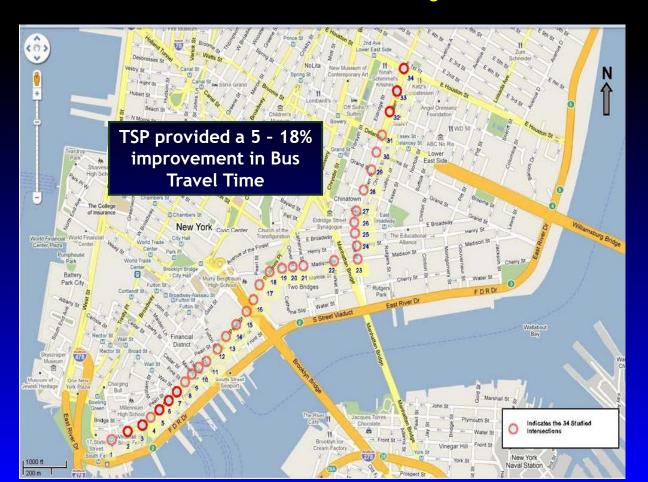

 Detail analysis associated with existing traffic operations, equipment research and recommendations including the "before" scenarios (simulation runs).

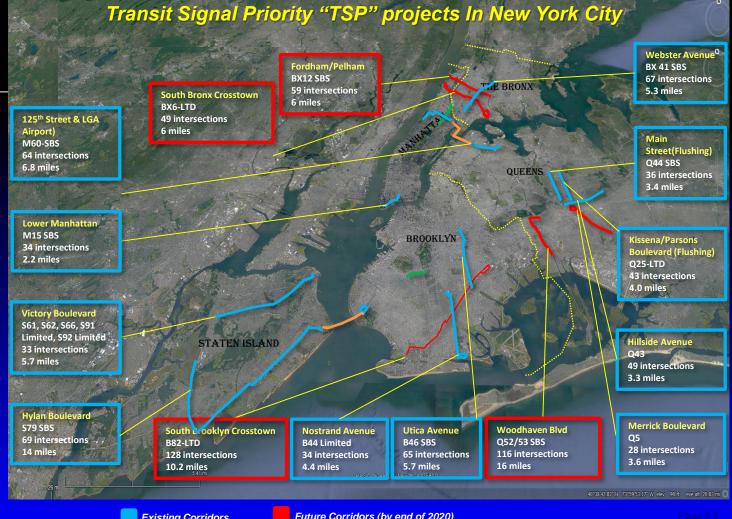
"After" Conditions:


 Evaluation of the applied TSP scenarios for evaluating its effectiveness and potential for modification.

Detection Zones

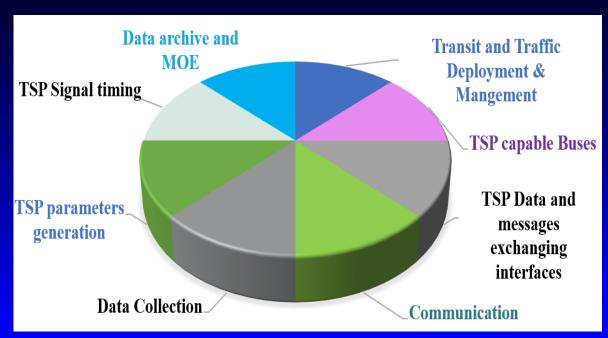
Region upstream of pedestrian crosswalk where TSP calls are recognized, measured in feet and based on estimated travel speed during each peak hour


Bus Behavior at a TSP-Equipped Signal



Lower Manhattan Project Area

Lower Manhattan Project Area


Early Action Corridors

Maintenance of TSP Operations

- Monitor TSP Corridors on a daily basis.
- Identify anomalies
- Determine causes (Bus, Intersection, TSP settings).
- Make necessary adjustments.
 - Identify Bus
 - Modify TSP Settings
 - Inspect Intersection / Controller
- Observe these adjustments the next day during our daily monitoring schedule.

Innovative Methodologies to Apply TSP Program – Components

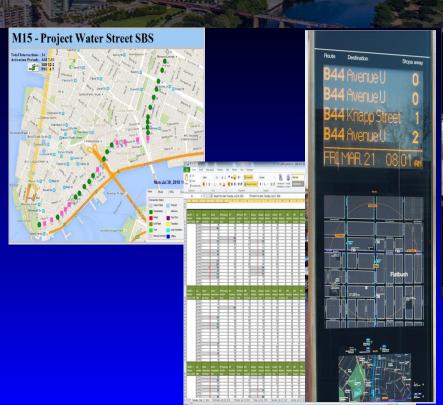
TSP program is a collection and combination of transit and traffic assets and services

Innovative Methodologies to Apply TSP Program — Improvements

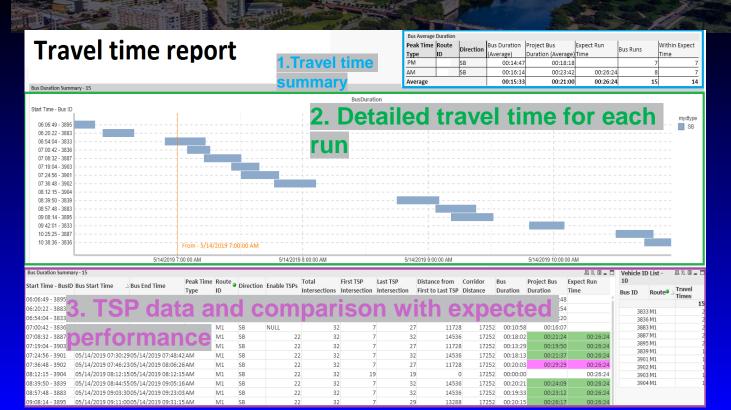
New interface to send TSP parameters to NYCT and include additional 2-byte data in bus logs

Deploy local and limited TSP routes differently and separate local and TSP buses data.

Central system collects data for "before" and "after" studies to minimize field involvement.


Reallocate eligible green time to increase efficiency and enhance safety for TSP operation

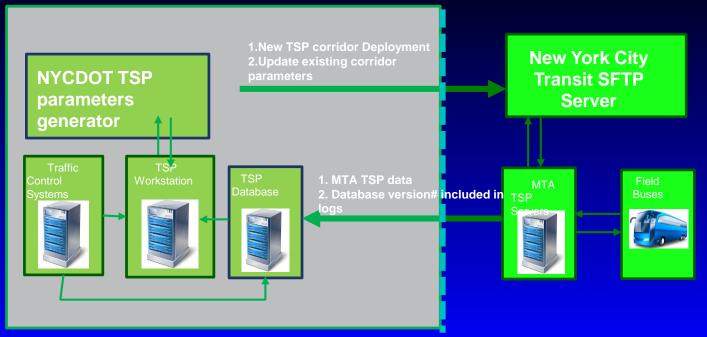
Increase network bandwidth between NYCT and NYCDOT TMC to enhance transmission


Innovative methodologies to measure TSP performance – TSP monitoring

- System wide TSP Monitoring
- Reports (Ongoing)
 - Communications
 - Performance
- Live Video Feeds
- Weekly E-Mail Alerts
- RTPI/Wayfinder signs

Innovative methodologies to measure TSP performance — dashboard report

Innovative methodologies to measure TSP performance – dashboard report


07:00:42 - 05 07:08:32 - 05 07:19:04 - 05 07:24:56 - 05 TSP and Split Log	ignal i	Bus End Time 05/14/2019 07:13:39 Trave ummai	l time	SB SB SB SB SB	Enable TSPs NULL NULL 2: 2: 2:	32 32 2 32 32	! 1 ! 7 ! 7	27 27 32 27	1172 1453 1172 1453 Bus message	9 1725 8 1725 6 1725 8 1725 6 1725 and Split log	00:10:56 2 00:18:03 2 00:13:29 2 00:18:13	3 00:16:07 2 00:21:24 9 00:19:50 3 00:21:37)	Run 00:26:24 00:26:24 00:26:24
06:54:04 - 05 07:00:42 - 05 07:08:32 - 05 07:19:04 - 05 07:24:56 - 05	ignal i	05/14/2019 07:13:39 . Trave ummai	I time	SB SB SB SB SB	NULL NULL 23	32 32 2 32 32	! 1 ! 7 ! 7	27 27 32 27	1446 1172 1453 1172 1453 Bus message	9 1725 8 1725 6 1725 8 1725 6 1725 and Split log	00:19:3: 00:10:5: 00:18:0: 00:18:0: 00:18:1:	00:23:20 00:16:07 00:21:24 00:19:50 00:21:37)	00:26:24
07:00:42 - 05 07:08:32 - 05 07:19:04 - 05 07:24:56 - 05 TSP and Split Log	ignal 1	. Trave ummai	l time	SB SB SB SB	NULL 2:	32 2 32 2 32	2 7 2 7 2 7	27 32 27	1172 1453 1172 1453 Bus message	8 1725 6 1725 8 1725 6 1725 and Split log	00:10:56 2 00:18:03 2 00:13:29 2 00:18:13	3 00:16:07 2 00:21:24 9 00:19:50 3 00:21:37)	00:26:24
07:08:32 - 05 07:19:04 - 05 07:24:56 - 05 TSP and Split Log	ignal (ummaı	ry	SB SB SB	2:	2 32	: 7 : 7	32	1453 1172 1453 Bus message	6 1725 8 1725 6 1725 and Split log	00:18:0 00:13:2 00:13:2 00:18:1	00:21:24 00:19:50 00:21:37		00:26:24
07:19:04 - 05 07:24:56 - 05 TSP and Split Loq	ignal t	ummaı	ry	SB SB	2	2 32	2 7	27	1172 1453 Bus message	8 1725 6 1725 and Split log	2 00:13:2: 2 00:18:1	00:19:50 00:21:37)	00:26:24
07:24:56 - 05 TSP and Split Log	ignal t			SB					1453 Bus message	6 1725 and Split log	00:18:1	00:21:37		
TSP and Split Loq	ignal t				2:	2 32	. 7	32	Bus message	and Split log				00:26:24
		timing	calcul			1 4 4								
160 2. S		timing	calcul	111	1 1 1	1 1 1			To Late L CV	cie .				
160 - 2. S		timing	calcul					data	CycleNumber Cy	om \(\triangle \) Cycle	To Time Time	Request	Update	Clearance
100 Z, 3		ummg		atia	n fo	r 000	h	▲ update ■ clearani	10	06:06:47 06:08		ne 0 38		
	loct i		calcul	alio	11 10	l eac		Reques		06:06:47 06:08		0 39		
WO CH		Indota	and a	OOK	100.00	20000		Red	171269	06:06:54 06:08	3:24 52	0 64		
140 regl	uesi, i	ıpdate	and C	ear	mes	ssage	35	Green	171269	06:06:54 06:08	3:24 52	0 66		
	uwwad	force	h ava							06:08:32 06:10		49 4		
120 OCC	urrea	for eac	in cyc	le -						06:08:32 06:10		49 5		
										06:08:48 06:10		45 60		
100										06:10:26 06:1:	2023	35 3		
00									3. I	SP (gree	n tim	e	
80									calc	rulat	lion	for ea	ack	20
60									Carc	o una	2.03 45	101 6	aGI	20 23
00									CVC	e ⁴⁰ 06:12		45 17		
									Cyc	40 06:12	2:10 45	45 19		
40									173285	06:10:40 06:13	2:10 46	45		22
									175132	06:10:40 06:13	2:10 45	45		24
20										06:10:47 06:13		37 22		
										06:10:47 06:13		37 23		
0	M. 100. M M M.	de la la companie de								06:10:59 06:13		49 45 49 45		
										06:10:59 06:12 06:10:59 06:12		49 45		49
ycleNumber										06:10:59 06:1		49		50
< 0)		06:11:08 06:13		45 51		50
21584 21583 21	21593 21595 1585 21594 216		21623 21633 21 21632 21634	671 21673	3 21684 21683 2168	21687 21689 5 21688 2	21713 21 1712 21714	1743 21913 21912	110000000000000000000000000000000000000	06:11:08 06:13		45 53		

Innovative methodologies to measure TSP performance – dashboard report

Innovative methodologies to measure TSP performance – data exchange interface

• Data exchange interface – deploy and fine tune operation

Build future sustainability

TSP Before vs. After Studies

- Positive results with bus travel times improvement of 5 to 30 percent (see table below for details) .
- 10-30% faster bus speeds, about 10% increase in ridership, more reliable service, customer satisfaction of 95%, safer streets/reduction in crashes.

Route	AM Before	AM After	AM Improvement	Midday Before	Midday After	Midday Improvement	PM Before	PM After	PM Improvement
M15 NB	18.7	15.3	18.2%	17	16.2	4.7%	20	16.8	16%
M15 SB	19.1	16.5	13.6%	18.4	16.7	9.2%	18.1	15.5	14.4%
S79 To BK	51.5	36.9	28.3%	37.4	29.9	20.1%	51.4	40.5	21.2%
S79 To SI	41.2	32.3	21.6%	40.5	27.1	33.1%	56.1	40.3	28.2%
B44 NB	30.6	25.1	18.0%	27.4	26.2	4.4%	29.6	26.2	11.50%
B44 SB	24.5	21.2	13.5%	27	22.3	17.4%	29.4	22.1	24.8%
BX41 NB/EB	45.1	36.4	19.3%	NA	NA	NA	51.6	41.5	19.6%
BX41 SB/WB	40.6	33.6	17.2%	NA	NA	NA	45.8	36.2	21.0%

American Council of Engineering Companies (ACEC)

Diamond Award

New York State and

National Recognition Award

ITS Project of the Year ITS - NY

Arterial Management Toolkit: Experiences from Washington, DC

Soumya Dey, PE, PMP

District DOT

Arterial Management Toolkit – Experiences from Washington, DC

Presented by:

Soumya Dey, P.E., PMP, Associate Director, DDOT
Presented to:

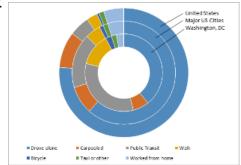
I-95 Corridor Coalition – Arterial Management Webinar
August 22, 2019

OVERVIEW

Washington, DC – Regional Setting

- 68.3 square miles
- DC metropolitan area
 - Population 5.6 million
 - 7th largest metro
- DC population 700,000
 - 500,000 daily commuters
 - 100,000+ daily visitors
- Arterial system, not freeway centric
- Multimodal nature of travel
- Lowest auto ownership

DC's Unique Travel Characteristics


Arterial System

- < 15 miles of freeway
- 1650 signalized intersections
- One out of every four vehicle trip entering the District is "cut through"
- 2 out of 3 cars in the District during rush hours is from out of state

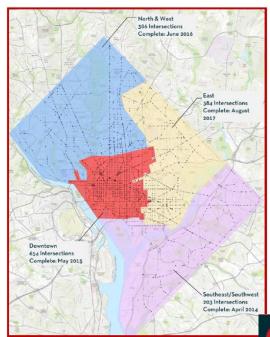
From		Freeway	Arterial	Total
VA	# of Routes	2	3	5
	Inbound VPD	190,000	120,000	310,000
MD	# of Routes	2	47	49
	Inbound VPD	112,000	488,000	660,000
VA+MD	Inbound VPD	302,000 (37%)	608,000 (63%)	970,000

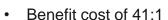
Multi-modal travel

- 2nd highest percentage of non-vehicle mode share
 - 38% Transit (2nd to NY)
 - 3.1% Bike (5th in country)
 - 12% Walk (2nd to Baltimore)
- 37% of DC residents do not own an automobile
- 75% of trips by non-SOV mode by 2032

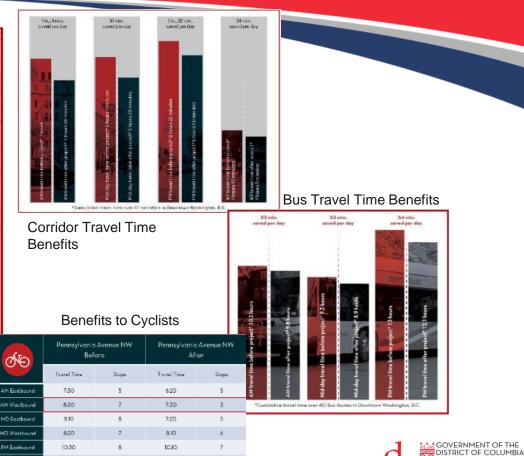
Source: MWCOG Travel Demand Model 2010 Forecasts

DDOT's Arterial Management Toolkit


Arterial Management Strategies	Benefits				
Signal Manage	ment Strategies				
Signal Timing Optimization (1650 intersections)	 Benefit cost of 41:1 33% reduction in emissions 20% reduction in delays 10% reduction in stops 10% reduction in fuel consumption 				
Transit Signal Priority (195 intersections)	 Reduced bus travel time by 5.3%, more robust analysis underway 				
Adaptive Signal Control (3 corridors)	Travel time benefits on mainlineExcessive side street delayNot pedestrian friendly				
Lane Manager	nent Strategies				
Reversible Lanes	 Effective from capacity utilization standpoint Safety and economic development/placemaking concerns 				
Assessment of Existing Rush Hour Restrictions	Discussion				
Bus Only Lanes	Discussion				
Curbside Manag	ement Strategies				
Parking Pricing	Discussion				
Pick-up, drop-off zones	 Being expanded after pilot based on hot spot analysis of TNC pick-up/drop off from Shared Street 				

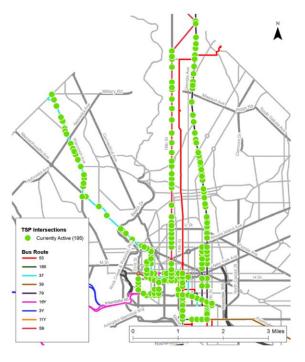


SIGNAL MANAGEMENT STRATEGIES


SIGNAL TIMING OPTIMIZATION

Benefits of Signal Optimization

- 33% reduction in emissions
- 20% reduction in delays
- 10% reduction in stops
- 10% reduction in fuel consumption



7,45

8.10

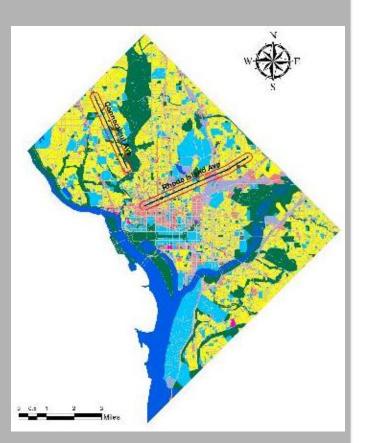
TRANSIT SIGNAL PRIORITY

Transit Signal Priority

- Transit signal priority at 195 intersections
- Collaborative process with WMATA
- Reduces bus travel time by 5.3%
- More robust "with" and "without" assessment underway using the following performance metrics:
 - Bus runtime
 - Bus travel time reliability
 - Schedule deviation distribution
 - Headway distribution
 - Pedestrian crossing compliance
 - Mainline auto travel time
 - Mainline number of stops
 - Side street queues
 - Phase green time distribution
 - Percent buses requesting priority

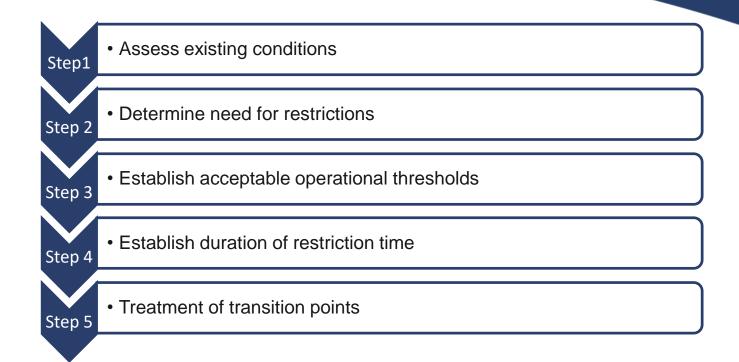
ADAPTIVE CONTROL SIGNAL

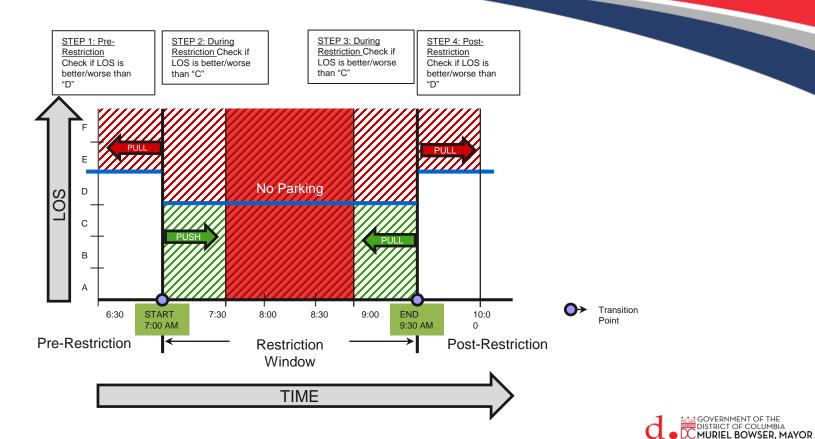
Adaptive Signal Control


- DDOT's pilot Adaptive Signal Control project concluded in 2018 with the activation, testing, and evaluation of Adaptive Signal Control Technology (ASCT) on three arterials within the District of Columbia:
 - Rhode Island Avenue NE from 4th Street NE to Eastern Avenue NE;
 - New York Avenue from 4th Street NW/I-395 Interchange to Bladensburg Road NE; and
 - Pennsylvania Avenue SE from Anacostia Freeway Ramp/Fairlawn Avenue to Southern Avenue SE
- Following completion of ASCT pilot testing, controller timings were reverted to Time Based Coordination to mitigate excessive side street delay and queues in the peak hours and provide predictable operations for pedestrians.
- While limited travel time benefits were observed on the mainlines, unacceptable impacts to side street queues and delays were observed.
- On the whole, the shortcomings of the Adaptive software application have been concluded to outweigh its benefits for this operating environment.
- The report is anticipated to be finalized in fall 2019.

LANE MANAGEMENT STRATEGIES

FRAMEWORK FOR RUSH HOUR RESTRICTION EVALUATION


Scope of Work


- Assess the validity of the prevailing peak hour restriction times that were set a while ago.
- Develop a framework that would allow conceptual evaluation of similar roadways to understand whether a modification of peak period parking restriction (i.e., expansion, reduction or shift) may offer benefits.
 - Tradeoff between mobility and accessibility
 - Accommodating competing demands on curbspace
 - Impacts on neighborhoods cut through, parking, etc.
- Evaluate the interaction among peak period parking restrictions, traffic operations, and parking along two (2) arterial corridors in the District.

Assessment Framework

Framework for Assessing Rush Hour Restrictions

Summary of Findings

- Shrink Restriction

- Expand Restriction

- Existing Restriction

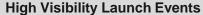
- No Restriction

Elements of Policy Framework

Existing	Good Public	Neighborhood Cut	Neighborhood	Neighborhood
Corridor	Transportation	Through Potentials	Parking	Parking Near or at
LOS	Available	Present	Adequate**	Capacity
"D" or better	Consider keeping	Consider keeping	Consider keeping	Consider decreasing
through Peak	current parking	current parking	current parking	parking restriction
Periods	restrictions or	restrictions or	restrictions or	time period
	increasing parking	increasing parking	increasing parking	
	restrictions	restrictions	restrictions	
"E or F"	Consider increasing	Consider increasing	Consider increasing	Consider keeping
through Peak	parking restrictions	parking restrictions	parking restrictions	current parking
Periods				restrictions or
				increasing restrictions
"E" during	Consider keeping	Consider keeping	Consider keeping	Consider keeping
shoulder	current parking	current parking	current parking	current parking
time	restrictions or	restrictions	restrictions or	restrictions
periods*	increasing restrictions		increasing restrictions	
"F" during	Consider keeping	Consider keeping	Increase parking	Consider keeping
shoulder	current parking	current parking	restriction time	current parking
<i>time</i> periods	restrictions or	restrictions or	periods	restrictions or
	increasing restrictions	increasing restrictions		increasing restrictions

BUS ONLY LANES

H & I Streets NW Pilot Bus Lanes


BUS LANES ARE COMING TO YOUR NEIGHBORHOOD Avoid a ticket or tow. Don't park or drive in an active bus lane. The fine for driving or parking in a bus lane is \$200.

Red paint on the road means the lane is restricted to buses only (and other exempt vehicles) for at least part of the day. Active bus lanes can only be used by private vehicles for 40 feet, or about two car lengths, prior to making a turn. Check signage to see when restrictions apply. For more information, please visit ddot.dc.govpagebus_priority.

Early Coordination

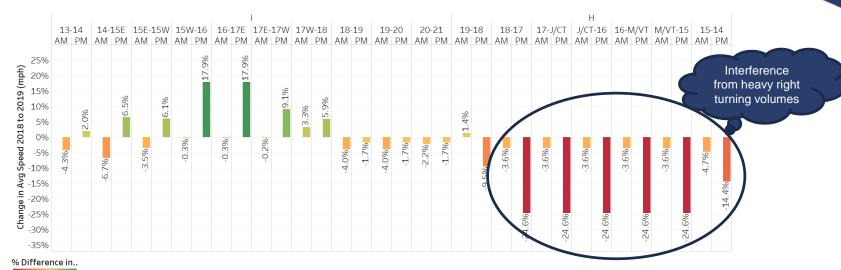
Community
Federal Reviewers
DDOT Teams
Interagency Partners

Evaluation Plan

Monitor Bus Lane Performance and Compliance

H & I Streets NW Pilot Bus Lanes

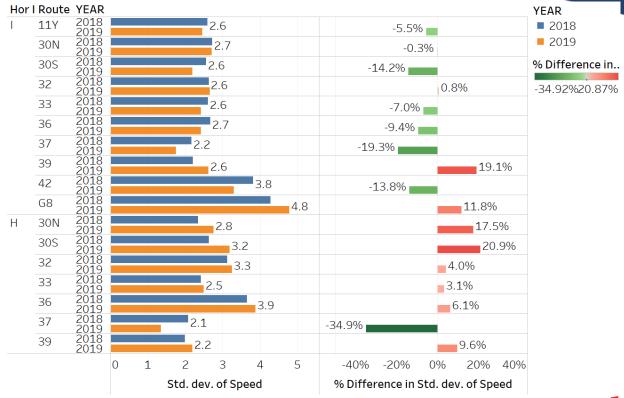
June 3 to September 27, 2019



AM Rush: 7am – 9:30am PM Rush: 4pm – 6:30pm

H & I Streets NW Pilot Bus Lanes – Average Bus Speed

Percent Change in Average Speed by Block



-24.59%17.89%

H & I Streets NW Pilot Bus Lanes – Bus Reliability

Standard Deviation of Average Travel Speed

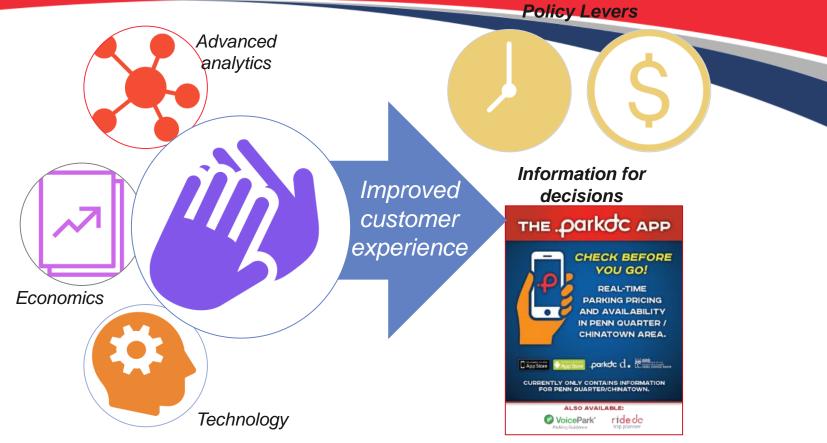
Key Issues to be Resolved

- Conflict of buses with right turning vehicles restrict right turns at key intersections, exclusive right turn lanes at others
- Bus layover needs to be relocated
- Encroachment on bus lanes continued enforcement

REVERSIBLE LANES

Reversible Lanes – the DC Experience

- Utilization of existing infrastructure
 - Aligns transportation supply and demand; benefits to traffic operations
- Economic Revitalization/Placemaking
 - Caters to "through" traffic; not "destination" traffic
- Safety Assessment
 - Higher crash rates than comparable surrogates after normalized for traffic volumes (Connecticut Avenue vs Massachusetts Avenue and Wisconsin Avenue). Higher percentage of head-on and side-swipe crashes.
 - Higher percentage of crashes during reversible lane operations (NOT after normalized for traffic volumes). Higher percentage of head-on and side swipe compared to District average.
 - Illegal encroachment on reversible lanes in some sections; low utilization of reversible lanes in those sections
 - Can be confusing to pedestrians and visitors
- Should be assessed on a case-by-case basis


Evaluation Criteria	Result
Utilization of existing capacity	
Safety	36
Economic development/placemaking	1

CURBSIDE MANAGEMENT STRATEGIES

CURBSIDE PARKING PRICING

What is parkDC?



Lever 1: Pricing (FH-FL)

Price Change	Rate S	Structure	e (hourl	y rates)								
Baseline				\$2.30								
Round 1 October 2016			\$2.00	\$2.30	\$2.75					ligh oot p	ion naint	
Round 2 February 2017		\$1.50	\$2.00	\$2.30	\$2.75	\$3.25			impa face AM -	Highest price point impacts less than 8 block faces during weekday 11 AM – 4PM and less than 2 block faces during the		
Round 3 <i>May 2017</i>	\$1.00	\$1.50	\$2.00	\$2.30	\$2.75	\$3.25	\$4.00				auring the PM – 10 PM	
Round 4 August 2017	\$1.00	\$1.50	\$2.00	\$2.30	\$2.75	\$3.25	\$4.00	\$4.75				
Round 5 November 2017	\$1.00	\$1.50	\$2.00	\$2.30	\$2.75	\$3.25	\$4.00	\$4.75	\$5.50			
Round 6 October 2018	\$1.00	\$1.50	\$2.00	\$2.30	\$2.75	\$3.25	\$4.00	\$4.75	\$5.50	\$6.00		
Round 7 22 January 2019	\$1.00	\$1.50	\$2.00	\$2.30	\$2.75	\$3.25	\$4.00	\$4.75	\$5.50	\$6.00		
5	0	nce a blo	ck hits th	e "sweet	spot" at a	certain p	rice poin	t, we do n	ot chang	e it	GOVERNMENT OF THE DISTRICT OF COLUMBIA DISTRICT OF COLUMBIA MAYOR	

Lever 2: Time Limits

Increased time limit to 4 hours in eastern third of pilot area (start at 4 PM instead of 6:30 PM and all day Saturday)

Progress over time

Pilot Measure	Pre-Pilot	Round 1 October 2016	Round 2 February 2017	Round 3 May 2017	Round 4 August 2017	Round 5 November 2017	Round 6 October 2018	Round 7 January 2019
Number of Price Points	1	3	5	7	8	9	10	11
Increased Price	-	94 blocks	172 blocks	142 blocks	71 blocks	89 blocks	63 blocks	106 blocks
Steady Price	-	223 blocks	185 blocks	222 blocks	262 blocks	266 blocks	280 blocks	261 blocks
Decreased Price	-	47 blocks	13 blocks	7 blocks	38 blocks	16 blocks	20 blocks	4 blocks
Blocks at Equilibrium (no change recommended)		60% (conservative approach to first round price changes)	50%	60%	71% (larger percentage not changed due to construction)	72%	77% (Conservative approach for blocks without sensor data)	70%

*Green blocks at target occupancy: 70% - 90%

Goal 1: Reduce time to find a space

DDOT directly influenced customers' ability to find and pay for parking

- Parking availability increased on high-demand blocks, and underutilized spaces found more takers
- Turnover increased (10% reduction in stays from 66 to 60 mins.)
- The pilot made parking easier to find (5% increase in space availability)

Number of Minutes to Find Parking (Selfenorted) 20 14 12 Time to find parking reduced from 17 mins to 12 mins Before After Price After Price After Price After Price Change 1 Change 2 Change 3 Change 4 Change 5 Number of Minutes to Find Parking (Automated) - Afternoon Rush Time to find parking reduced by 3 mins per Evening ---- Midday Mid-morning — Morning Rush Linear (Afternoon Rush) Linear (Evening) Linear (Midday) Linear (Mid-morning)

Price

Change 4

Price

Change 5

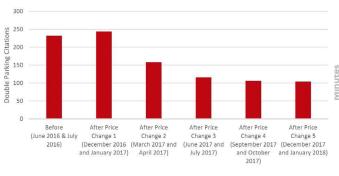
...... Linear (Morning Rush)

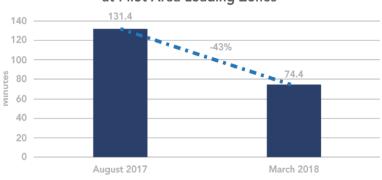
Price

Price

Change 2

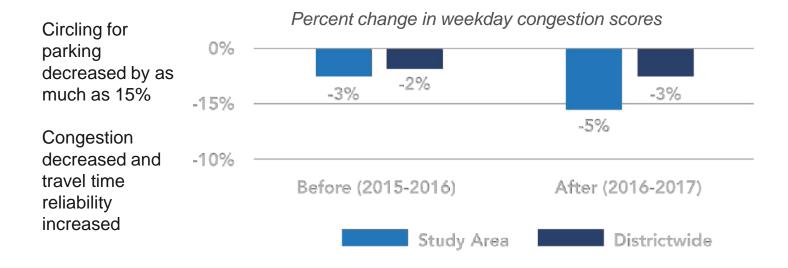
Price


Change 3


Decline in illegal parking

As supply increased, illegal parking decreased

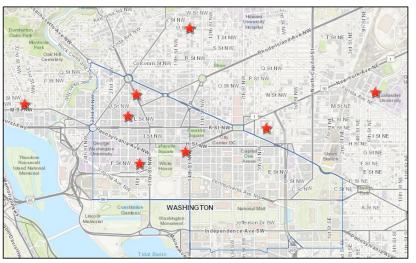
Double parking citations fell by 55%


Average Length of Double-Parking Session at Pilot Area Loading Zones

	Pilot Area Average Double Parking	Control Area Average Double Parking
Before (2015)	1.8%	2.4%
After (2017)	0.8%	2.0%
Change over Time	-0.9%	-0.4%

Goal 2: Reduce congestion & improve safety

Performance vs. Goals Overview


Reduce time to find an available parking space	Objective Met?
Increase parking availability	Yes
Provide parking availability to customers real-time	Yes
Improve parking regulatory signage	Yes
Reduce congestion and pollution, improve safety, encourage use of alternative modes	Objective Met?
Reduce double parking	Yes
Reduce circling for parking	Yes
Encourage travel by other modes	Yes
Improve operations of commercial loading zones	Yes
Develop parking management solutions through cost-effective, asset-lite approach	Objective Met?
Test different parking occupancy detection solutions	Yes
Explore effectiveness of fusing data from various sources	Yes

PASSENGER PICK UP DROP OFF (PUDO) ZONES

Pick-up/Drop-off (PUDO) Zone Pilot Program

- DDOT's Pick-up/Drop-off (PUDO) Zone pilot program evolved from the Nightlife Curbside Restriction Pilot, which restricted night time parking at popular nightlife locations
- The PUDO Zone pilot launched in December 2018 (14th and U Street NW)
- PUDO zone characteristics:
 - <u>Active</u> passenger or commercial loading/unloading allowed
 - At least 40-feet (ideally 60+ feet)
 - 24-hour No Parking
 - Higher fine than regular
 No Parking zone (\$35 → \$75)

PUDO Zone Locations as of 8/15/19 (Wharf location not pictured)

Pick-up/Drop-off (PUDO) Zone Pilot Program

PUDO Zone Pilot Goals

- Safety- Facilitate safe movement of people and goods by keeping curbs clear
- Curbside Efficiency/Utilization- Reduce curbside turnover time, decrease queue lengths, increase trip completion, and reduce crashes.
- Traffic Control- Allow more space for all modes to interact with the curbside to improve throughput.

Observation and Feedback

- · Reductions in double-parking and blocking travel/bike lanes
- · Reductions in congestion
- Increased use of curb lanes for passenger pick-up/drop-off;
- Less ride hailing from the roadway
- Positive feedback from stakeholders including BIDs, ANCs, and commercial interests

C • delivers

district department of transportation

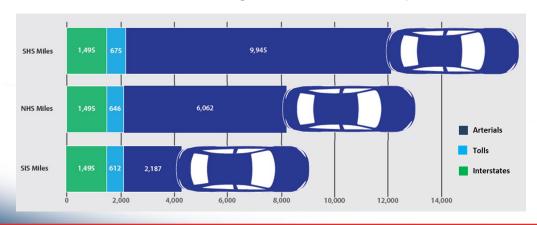
Florida's Statewide Arterial Management Program (STAMP)

Raj Ponnaluri, PE, PhD, PTOE, PMP Florida DOT

Florida's Statewide Arterial Management Program (STAMP)

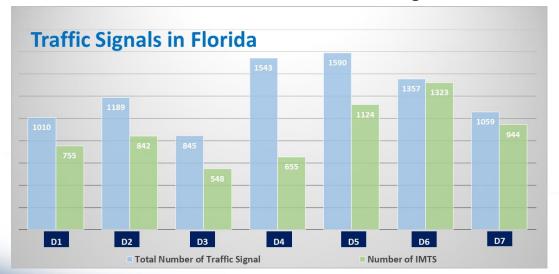
Raj Ponnaluri, PhD, PE, PTOE, PMP
Connected Vehicles and Arterial Management Engineer
Florida Department of Transportation

Agenda


- Understanding Florida's Arterial System
- 2. Traffic Signals in Florida
- 3. Statewide Arterial Management Program (STAMP)
- 4. STAMP Action Plan
 - Key Elements of the STAMP Action Plan
 - STAMP Action Plan Outline
 - STAMP Outcomes and Performance Assessments
 - STAMP Action Items
- 5. Traffic Signal Maintenance and compensation Agreement (TSMCA)
- Traffic Signals Training
- 7. Signal Phase and Timing (SPaT) Traffic Signal CAV Application
- 8. Automated Traffic Signal Performance Measures (ATSPM)

Understanding Florida's Arterial System

Florida's arterial system:

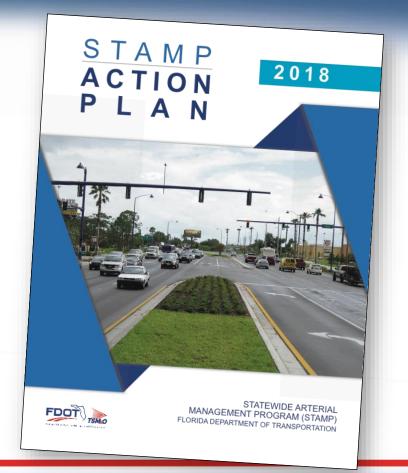

- 82% of the total state highway system (SHS) center-line miles
- 74% of total national highway system (NHS) center-line miles
- 51% of total strategic intermodal system (SIS) center-line miles

Source: FDOT Planning Office http://www.fdot.gov/statistics/hwysys/default.shtm

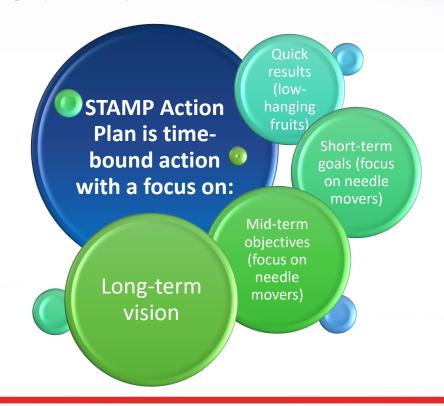
Traffic Signals in Florida

FY 2018-2019 TSMCA Traffic Signal Counts and Interconnected and Monitored Signals

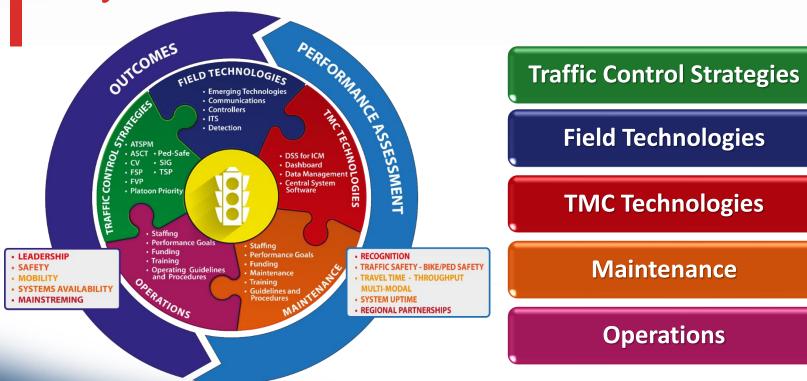
Out of 8,593 traffic signals of SHS 6,191 (approximately 72%) are interconnected and monitored.


Statewide Arterial Management Program (STAMP)

Mission: To deliver the TSM&O Strategic Plan's vision, mission and goals for arterials.


STAMP Action Plan

- STAMP Action Plan
 - Builds upon TSM&O Strategic Plan
 - Arterial Management is one of the six priority focus areas of Strat Plan
 - Develops a comprehensive approach to arterial management
 - Focuses on action for the next 3 years



STAMP Action Plan Outline

- Focus on needle movers –
 action items that make a
 noticeable difference in the
 program to take it to the next
 level
- Districts and locals providing input
- STAMP Action Plan is timebound

Key Elements of the STAMP Action Plan

STAMP Outcomes and Performance Assessment

Leadership

The associated performance assessment for leadership is *FDOT recognition locally and nationally.*

Safety

The associated performance assessments are improved *traffic and bike-ped safety*.

Mobility

The associated performance assessment for mobility are travel time improvement and increased throughput for all roadway users, regardless of travel mode choice.

STAMP Outcomes and Performance Assessment

Systems Availability

The performance assessment associated for systems availability is to have *higher system uptime*.

Mainstreaming

The performance assessment associated for arterial mainstreaming is *enhanced regional*partnerships and local support

STAMP Action Items

The STAMP Action Plan outlined 69 action items that are specific, measurable, accountable, relevant, and timely for CO and Districts to accomplish within the next three to five years.

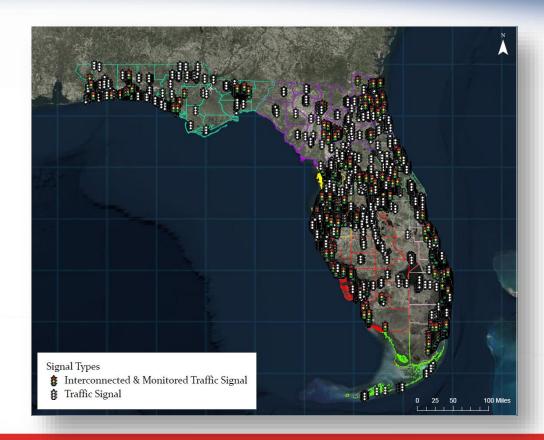
Districts and CO will be moving towards achieving action item goals in a time bound schedule.

In the process, the action items may be modified, added, or removed in full coordination with the Districts and FDOT Partners

Traffic Signal Maintenance and Compensation Agreement (TSMCA)

- FDOT compensates local agencies for operating and maintaining all of its on-system traffic signals via TSMCA
- FDOT compensates approximately \$41M under TSMCA to the Local Agencies

STATE OF FLORIDA DEPARTMENT OF TRAFFIC SIGNAL MAINTENANCE AND C		750-010-22 TRAFFIC OPERATIONS 06/16 Page 1 of 6
FINA	CONTRACT NONCIAL PROJECT NO	
THIS TRAFFIC SIGNAL MAINTENANCE AND COMPENSATION AG	F.E.I.D. NO	
ne State of Florida, herein called the "Department", and	Florida, ("Maintaining A	


- Exhibit B of the TSMCA includes unit rates for the following nine systems
 - Traffic Signals
 - Traffic Signals Interconnected and Monitored
 - Intersection Control Beacon
 - Pedestrian Flashing Beacon
 - Emergency Fire Department Signal

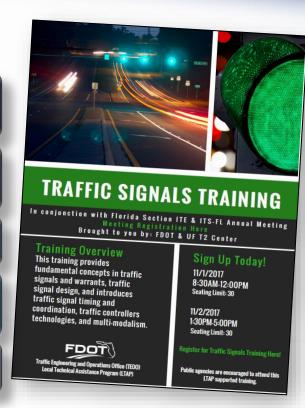
- Speed Activated Warning Display or Blank Out Signs
- Traffic Warning Beacons
- Travel Time Detector
- Uninterruptible Power Supplies

TSMCA

- 8,593 signals on the state highway system covered under TSMCA
- TSMCA covers
 - Damage reimbursements
 - Utility locates
 - Preventive maintenance
 - Emergency maintenance
 - Service restoration (temporary poles, stop signs, and/or signals)

Traffic Signals Training

FDOT has a Statewide TSM&O Excellence Program (STEP) in place for training and resource development


FDOT developed traffic signal 102 training to cover basics of traffic signal design, warrant analysis, retiming, and other traffic signal design elements

Trainings developed to be in-person for more advance topics

Modules on basic traffic signal introduction and warrant analysis are under development as computer based training (CBT)

Florida's Statewide Arterial Management Program (STAMP)

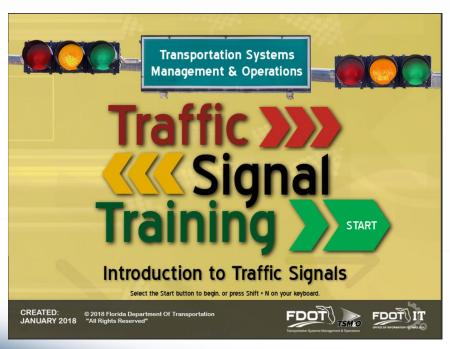
CBT will be pre-requisite for other advanced in-person training modules

Traffic Signals Training

FDOT has systems engineering process in place for low-risk, medium-risk, and high-risk projects

ASCT and Automated Signal Performance Measures (ATSPM) falls within low to medium risk projects

Systems
Engineering
Management
Plan (SEMP),
ASCT, and
ATSPM
Trainings


FDOT is developing PSEMP trainings to train local agencies and consultants on Project SEMP (PSEMP) process

FDOT is also developing ASCT training to train local agencies and consultants on ASCT systems and process for deployment

FDOT provides hands-on training on ATSPM deployment to local agencies, as needed

Traffic Signal Computer Based Training

Available to FDOT and Private Sector!

Link to the training: http://wbt.dot.state.fl.us/ois/TSMO/index.htm

Signal Phase and Timing (SPaT) - Traffic Signal CAV Application

SPaT Projects in Florida:

Tallahassee SPaT in District 3-Operational Phase (21 Signals)

Gainesville Trapezium SPaT in District 2- **Deployment Phase** (27 Signals)

Pinellas County SPaT in District 7-Procurement Phase (23 Signals)

ATSPM Deployment

District Coordination

- STAMP Working Group Meet bi-monthly
- SharePoint site for sharing and uploading agreements

QUESTIONS?

Questions?

Remaining Questions from the CHAT Box

Wrap Up

Meeting information & presentations will be posted to the I-95 Corridor Coalition website. Participants will receive a link to the presentations after they are posted.

Contact Information

I-95 Corridor Coalition

 Denise Markow, PE, I-95 Corridor Coalition, TSMO Director dmarkow@i95coalition.org, 301-789-9088

Speakers

- Emad Makarious, New York City DOT emakarious@dot.nyc.gov
- Soumya Dey, District DOT <u>soumya.dey@dc.gov</u>
- Raj Ponnaluri, Florida DOT <u>raj.ponnaluri@dot.state.fl.us</u>

Thank You!