

POTOMAC HIGHWAY OPERATIONS GROUP EXCHANGE

MDOT Traffic Operations Center October 3, 2018

Welcome

9:30 am to 10:00 am	Networking & Continental Breakfast	All			
10:00 am to 10:15 am	Welcome / Introductions	Scott Yinger, MDOT-SHA			
10:15 am to 10:30 am	TIME Task Force Summary Update	Joey Sagal, MDOT-SHA			
10:30 am to 11:30 am	Jurisdictional Updates	Virginia Maryland Washington DC			
11:30 am to 12:00 pm	New, Automated Incident Management Dashboards	Greg Jordan, UMD CATT Lab			
12:00 pm to 12:30 pm	Working Lunch	All			
12:30 pm to 1:15 pm	Woodrow Wilson Bridge AAR Review Meeting Briefing	Taran Hutchison, MATOC			
1:15 pm to 1:45 pm	Interoperability in Radio Communications	Taran Hutchison / Mike Wood Scott Yinger			
1:45 pm to 2:00 pm	Wrap Up	Denise Markow, PE, I-95 Corridor Coalition			

Introductions

Time Task Force Summary Update

Joey Sagal

Maryland DOT State Highway Administration

Jurisdictional Updates

Virginia Department of Transportation

Virginia Kamal Suliman

Maryland Shelley Kellam

Tim Peck

Jason Dicembre

1/Sgt. Colin Bristow

Washington DC Soumya Dey

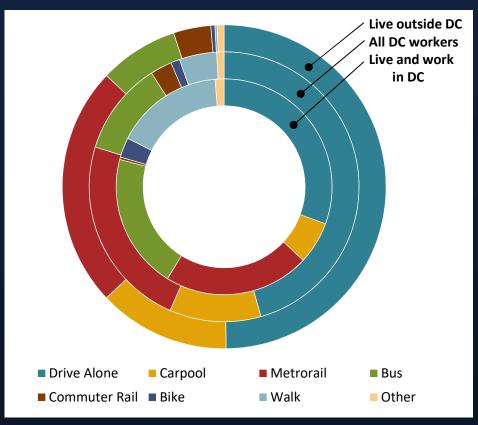
Presentation Outline

- Overview of Washington, DC. travel patterns
- Defining multimodal congestion
- System management strategies
- Progress on Move Over/Move It and Quick Clearance
- Recently Completed and Upcoming Projects
- Other Activity

OVERVIEW

Washington, DC - Regional Setting

- > 68.3 square miles
- DC metropolitan area
 - Population 5.6 million
 - 7th largest metro
- DC population 700,000
 - 500,000 daily commuters
 - 125,000+ daily visitors
 - 1000 new residents/month
 - Tech savvy population



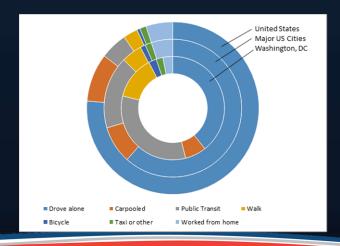
Regional Context

Where District Workers Live

How District Workers Commute

DC's Unique Travel Characteristics

Arterial System


- < 15 miles of freeway</p>
- One out of every four vehicle trip entering the District is "cut through"
- 2 out of 3 cars in the District during rush hours is from out of state

From		Freeway	Arterial	Total
VA	# of Routes	2	3	5
	Inbound VPD	190,000	120,000	310,000
MD	# of Routes	2	47	49
	Inbound VPD	112,000	488,000	660,000
VA+MD	Inbound VPD	302 , 000 (37%)	608,000 (63%)	970,000

Source: MWCOG Travel Demand Model 2010 Forecasts

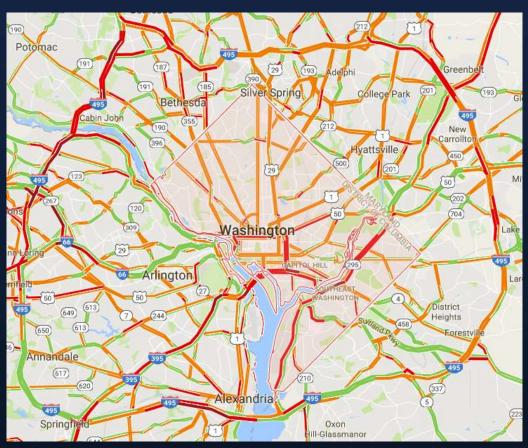
Multi-modal nature of travel

- 2nd highest percentage of nonvehicle mode share
 - 38% Transit (2nd to NY)
 - 3.1% Bike (5th in country)
 - 12% Walk (2nd to Baltimore)
- 37% of DC residents do not own an automobile

DEFINING CONGESTION

Deconstructing DC Congestion

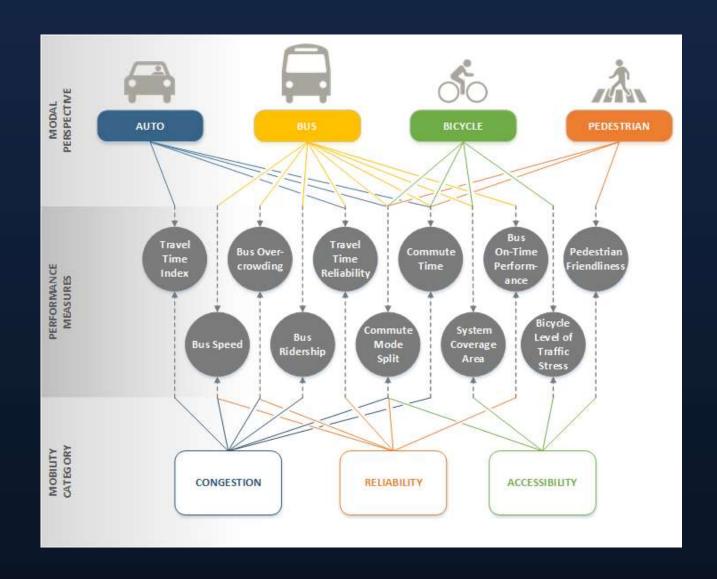
D.C. tops list of nation's worst traffic gridlock



Traffic crawls along the Capital Beltway during rush hour, in Greenbelt, Md., Tuesday, Aug. 25, 2015. Traffic congestion nationally reached a new peak last year and is greater than ever before, according to a report by the Texas A&M Transportation Institute and INRIX Inc. (AP.,

WASHINGTON-This may come as no surprise to anyone who has been stuck in traffic on Interstate 66, Interstate 95 or the Capital Beltway. The Washington, D.C. area has the worst traffic gridlock in the United States. Now, there's a report to prove it.

Not All Congestion is Created Equal

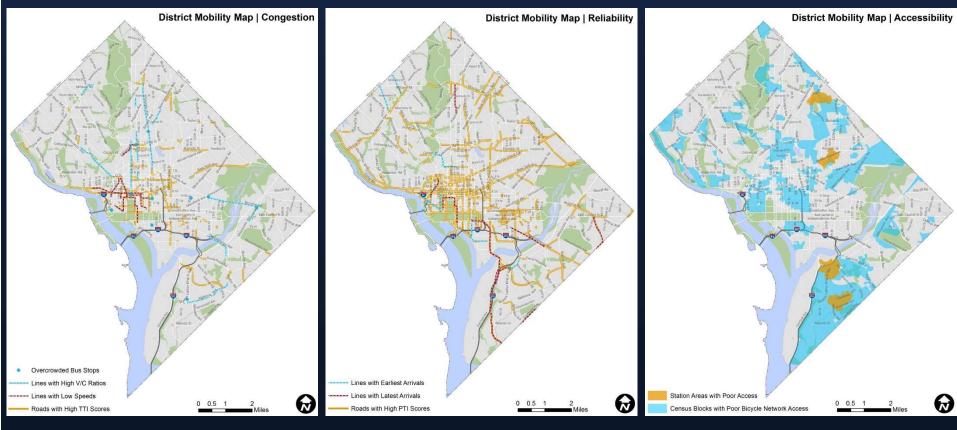


Multimodal Performance Measures

CONGESTION

RELIABILITY

ACCESSIBILITY



- Travel Time Index
- Bus Stop Activity
- Bus Overcrowding
- Bus Speed

- Travel Time Reliability
- Bus On-time Performance

- Transit Coverage (area and frequency)
- Job Accessibility
- Bicycle Comfort Network
- Pedestrian Friendliness

Identifying Multimodal Deficiencies

Congestion

Reliability

Accessibility

Prioritizing Strategies to Advance District Mobility

- Areas with deficiencies across different mobility categories
- Existing challenges, previous actions and planned actions inform strategic system investments

Description

NW to Eastern

Avenue NW

Corridor: H Street

Corridor: U Street

NW to Arkansas

Avenue NW and

Street NW

L'Enfant Plaza to U

Area Name

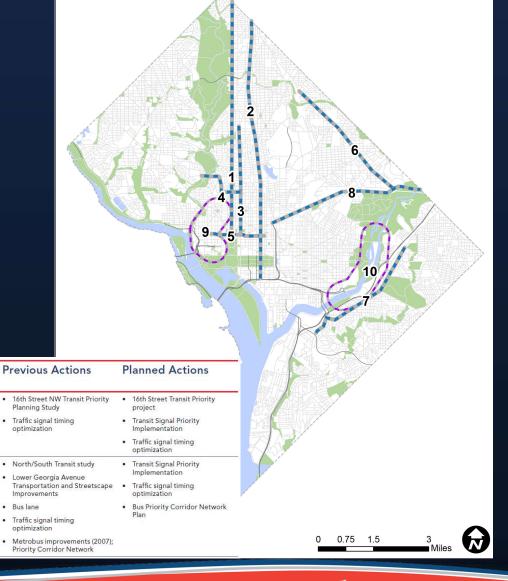
16th Street, NW

Georgia Avenue, NW

and 7th Street

Challenges

· High bus ridership


· Low bus speeds

Bus overcrowding

High bus ridership

· Bus overcrowding

· Highly variable travel time

TRANSPORTATION SYSTEM MANAGEMENT & OPERATIONS (TSMO) PLAN

System Management Strategy

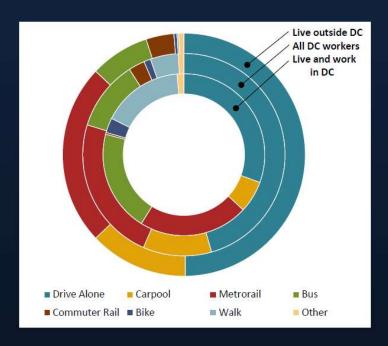
TSMO Philosophies

- "Asset Lite" solutions
 - Buy vs build decisions
 - DC owned devices vs third party data providers
- Data analytics for smarter tactical decisions
 - Combining data from disparate sources (weather, special events, etc.)
 - Proactive vs reactive
- Collaboration with private sector
 - Traveler information, route guidance
- Integrated platform for real-time travel choices

TMC – Input & Output

TMC/ROP Performance

- In 2017, TMC operators coordinated the response for **6,316** events, including:
 - 2,111 traffic signal requests
 - 1,821 disabled vehicles
 - 1,520 vehicle collisions
 - 193 traffic control requests
- ROP drivers responded to 3,760 of these events, including:
 - 1,697 disabled vehicles
 - 1,350 vehicle collisions
 - 170 traffic control requests
 - Average response time was 12 min
 - Average RCT was 51 min
 - Average ICT was 53 min


We already do <u>a lot</u> that falls under the TSMO umbrella so why develop a plan?

A plan gives a framework for future traffic operations activities:

- Project definition and prioritization
- Clearer organizational structure
- Means to better communicate operations perspective across agency
 - Collaboration
 - Funding
 - Long range planning

Need to incorporate several considerations unique to DC:

- Nation's Capitol
 - Serving both state and city functions
 - Frequent special events
 - Many stakeholders
- High proportion of out-of-state travelers
 - Population 700K+ with 500K+ daily commuters and 125K+ daily visitors
 - 1 out of 4 vehicle trips entering DC are "cut through"
 - 2 out of 3 vehicles during rush hour are from out of state
- Highly multimodal
 - 3nd highest percentage of non-vehicle mode share among US cities
- Arterial system
 - Less than 15 miles of freeway
 - Many primary commute routes along arterials
- > Tech savvy population

Draft developed in-house

- Used FHWA resources and other state and MPO plans as template
- Interviewed primary stakeholders to understand current state of practice, needs, gaps
- Ensured alignment with existing planning and vision documents

3 Main Sections:

- 1. Strategic Foundation
 - Foundation for developing a TSMO program
 - Clearly defines the relationship of TSMO to the agency mission or regional vision
 - Addresses "Why" TSMO is important
 - High-level vision of "what" the agency seeks to achieve, along with strategic goals and objectives

2. TSMO Program

- Addresses organizational structure and business processes for implementing TSMO activities
- Addresses "How" the TSMO program operates

3. Implementation and Deployment

- Addresses specific services, programs, and priorities
- Includes approach for prioritization, annualized actions, and performance assessment

Goals:

- Enhance operational consistency, capacity, and safety through smarter decision making
- Proactively manage and operate the transportation system by enhancing internal and external communication and collaboration
- Mainstream TSMO by incorporating as an inherent part of DDOT business processes

VISION

DDOT is committed to achieving an exceptional quality of life in the nation's capital by emphasizing safety, reliability and mobility in DDOT's transportation operations.

MISSION

Proactively operate a cohesive, sustainable transportation system that delivers safe and reliable movement of people.

GOALS

Enhance operational consistency, capacity, and safety through *smarter decision making*

Centralize and modernize traffic management technology

Conduct research and pilot projects

Improve data collection and management for traffic management systems

Analyze data to improve performance and inform decision makers

Proactively manage and operate the transportation system by enhancing internal and external communication and collaboration

Enhance coordination with external stakeholders

Enhance intra-agency awareness and cooperation

Expand capabilities and methods of disseminating information to travelers Mainstream TSMO by incorporating as an inherent part of DDOT business processes

Develop a comprehensive staffing and workforce development plan

Explore methods to increase funding and enhance the procurement process

Improve routine operations and maintenance processes

Goals	Enhance operational consistency canacity and safety through smarter decision making			Proactively manage and operate the transportation system by enhancing internal and external communication and collaboration			Mainstream TSMO by incorporating as an inherent part of DDOT business processes			
Objectives	traffic management	Conduct research and pilot projects	and management for	performance and inform	Enhance coordination with external stakeholders	Enhance intra-agency awareness and cooperation	methods of	comprehensive staffing and workforce	increase funding and	Improve routine operations and maintenance processes
Strategies	Carry out upgrades to enable advanced signal system operations	Evaluate feasibility of adopting alternative strategies to improve reliability for multimodal operations	and awareness of existing data across	Establish and track performance metrics to evaluate effectiveness of existing programs	Explore opportunities for enhanced resource sharing	Facilitate recurring interactions across agency divisions	Explore new means of communicating with the	Enhance professional development opportunities for existing staff		Create or revise standard operating procedures
	Improve CCTV system quality and accessibility	Investigate and conduct pilot projects for emerging technologies and strategies	Establish new sources of private and public sector data to improve situational awareness	Use data to optimize operations	Facilitate recurring opportunities for interagency communications	Integrate TSMO into planning documents	Install needed signage	Investigate need for additional staff resources	Explore new funding mechanisms	Improve resource management processes
	Acquire, replace, and repair supportive hardware	•	' '	Use data to support investment decisions	Create and implement needed interagency agreements		Investigate opportunities to collaborate on TDM outreach initiatives		Integrate TSMO into existing budget and allocation processes	
	Improve field-to-center communications reliability and bandwidth	Research best practices	Integrate and consolidate information systems		Explore new partnerships with the private sector					

Strategies	Establish new sources of data to improve situational awareness		Integrate and consolidate information systems	Establish and track performance metrics to evaluate effectiveness of existing programs			Explore opportunities for enhanced resource sharing		Create and implement needed interagency agreements
Action tems	Integrate ATMS with Waze event		Integrate ATMS with traffic signal work order system	Use ATMS to track TMC and ROP output and operator performance	Use AVL data to optimize ROP		Investigate ways to mitigate delays in dispatch due to fleet share reservation software issues		Work with MPD and/or FEMS to enable ROP vehicles to use emergency lights, using DPW approach for towing equipment
	Integrate ATMS with TOPS road closure information	Use MPD CAD and crash report data to improve tracking of incident and roadway clearance metrics	Integrate ATMS with MPD CAD	audits for TMC operator		Use ATMS and probe vehicle data to assess strategic locations for	Work with OCTO to identify opportunities for sharing backbone communications infrastructure		Advocate for enactment of Move Over/Move It laws via Vision Zero rulemaking
	Establish taskforce to discuss process for standardizing data content and formatting requirements across contracts and agreements		Consolidate requests for TCOs into one system	· ·	Use ATMS and probe vehicle data to update default CCTV displays for video walls			Work with HSEMA to ensure all necessary parties included in after-action exercises	Finalize Quick Clearance MOA
	Install AVI on all ROP vehicles	Use ATMS and vendor software to track ITS device outages			Develop process for identifying and coordinating conflicting road closures			operationally-significant transit	Begin discussions with MPD on WIM station enforcement in coordination with WIM repairs and upgrade
	Develop accessible dashboard of real-time TCO deployments								Work with MPD and/or FEMS to reestablish TIM training program

Next steps:

- Circulating to a wider group of stakeholders and finalizing draft based on feedback
- Developing plan for communicating across agency
- Incorporating into other planning documents and processes
- Developing clear method for continuous update
- Championing implementation of annualized actions via dedicated staff

OTHER ACTIVITIES

Move Over/Move It and Quick Clearance

- Background
 - DC currently has no Move Over/Move It law or Quick Clearance MOU on the books
 - Numerous efforts starting in 2009 to enact
 - Identified priority for agency
- Current status Move Over/Move It
 - Incorporated into 2nd proposed Vision Zero rulemaking, February 2017
 - DDOT & DMV to introduce a resolution through the Mayor's office to make the 2nd
 Vision Zero rulemaking final, pending approval or abstention from DC Council
- Current status Quick Clearance
 - Draft recently revised and reapproved by DDOT legal
 - Soon resharing with other agencies' leadership
 - Planned as future agenda item for citywide Vision Zero workgroup meeting

Projects

Recently completed

- Camera and microwave sensor installation on freeways (22 cameras, 56 sensors)
- New Advanced Traffic Management System (ATMS)

Under construction

 Backbone fiber optic network on freeways to improve remote connection and redundancy for CCTV, DMS, roadway sensors, and traffic signals system wide

Upcoming

- Camera installation on emergency evacuation routes (36 cameras)
- ATMS enhancements based on operator feedback and emerging data
- Weigh-in-motion system upgrades

More information

Contact:

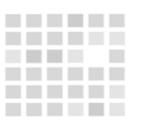
Soumya Dey, PE, PMP

Associate Director, Traffic Operations & Safety soumya.dey@dc.gov

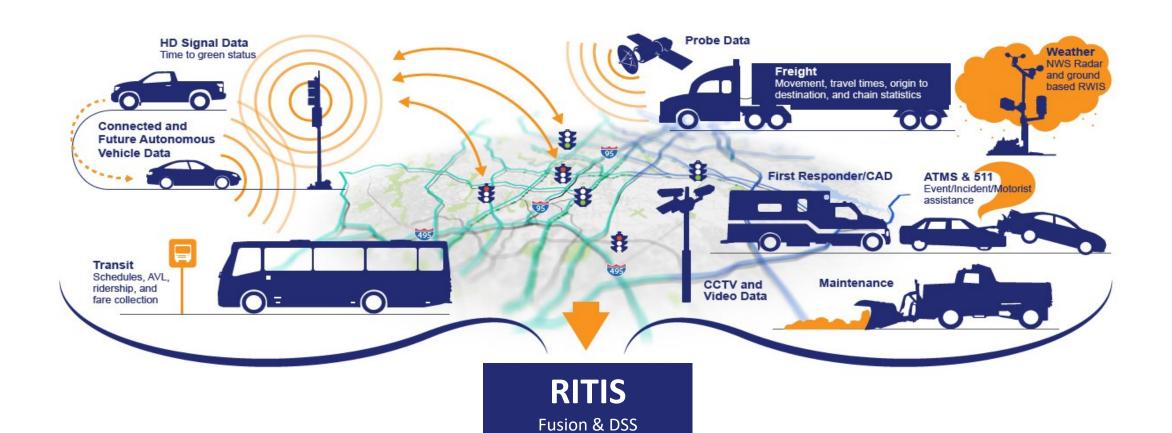
New, Automated Incident Management Dashboards

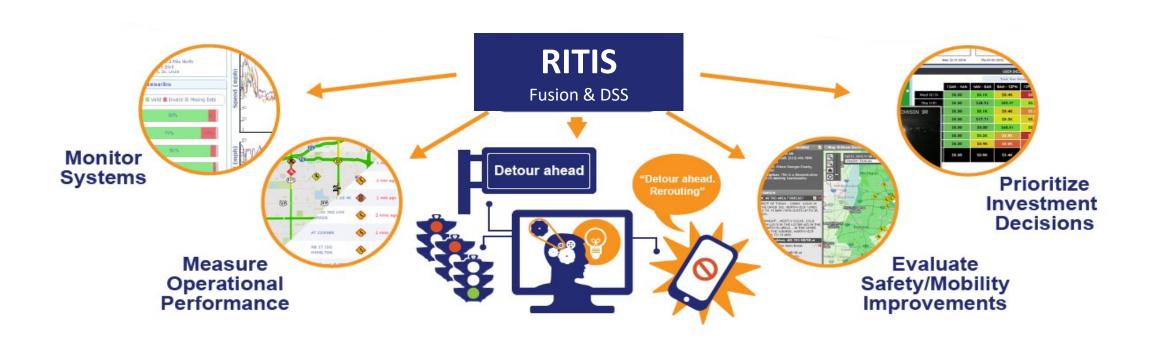
Greg Jordan

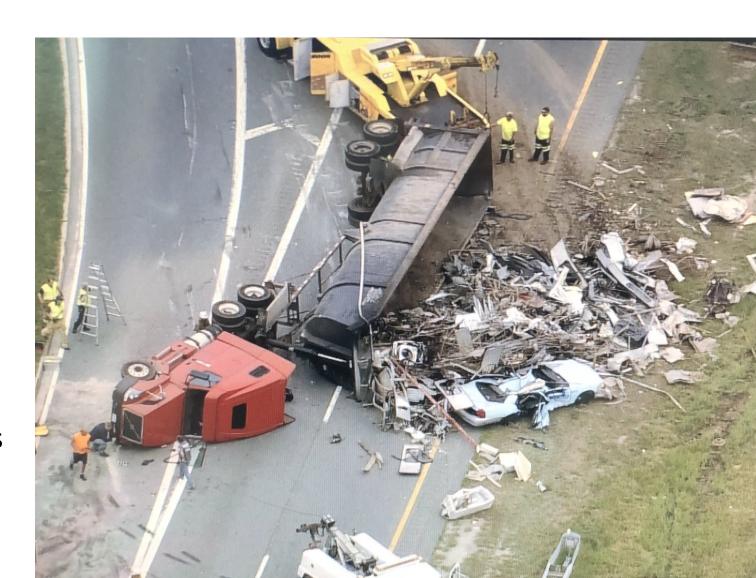
UMD CATT Laboratory



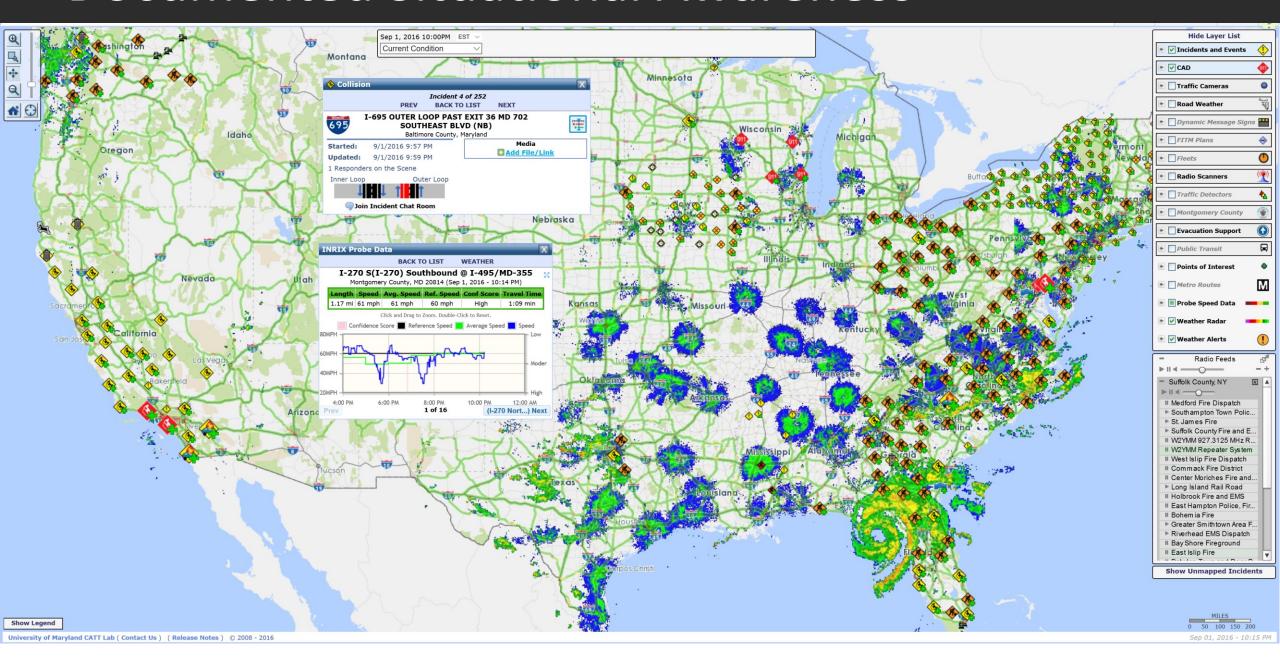
TSMO Advances in RITIS

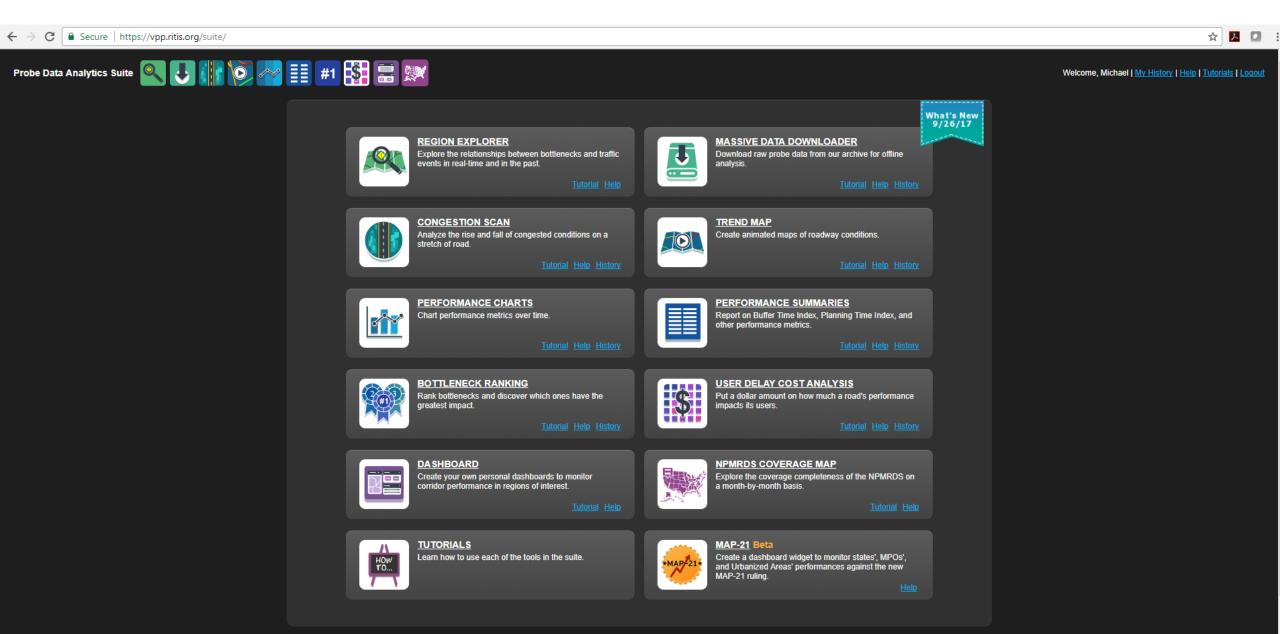

Greg Jordan, CATT Laboratory Director of Outreach



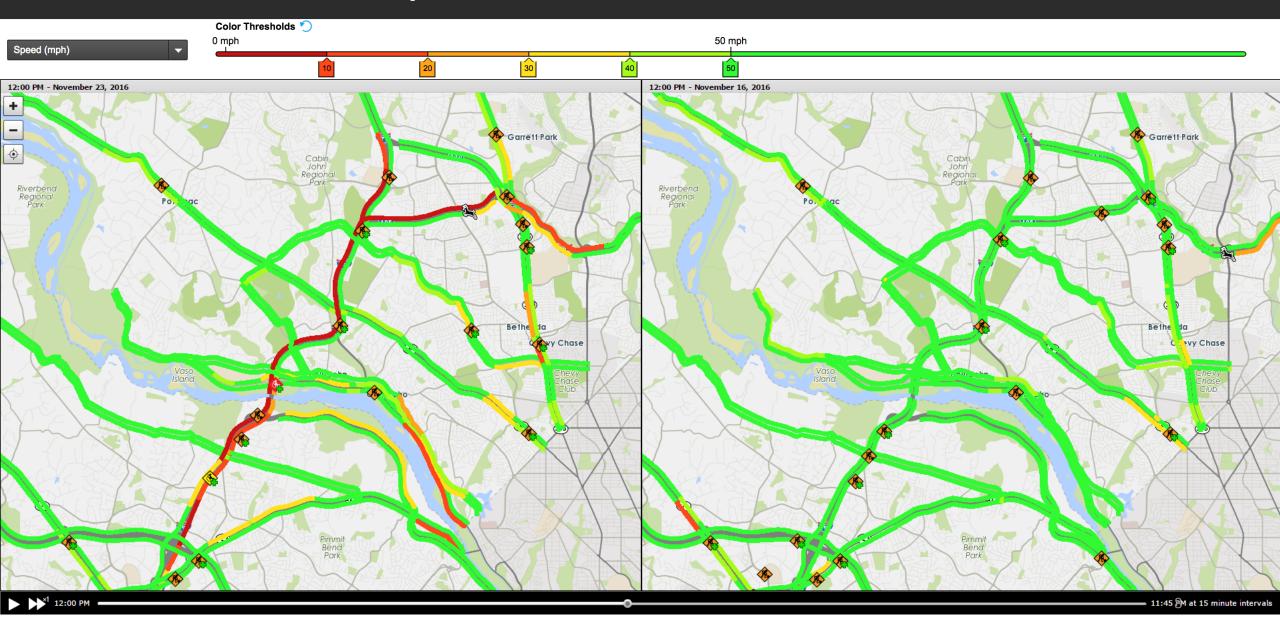


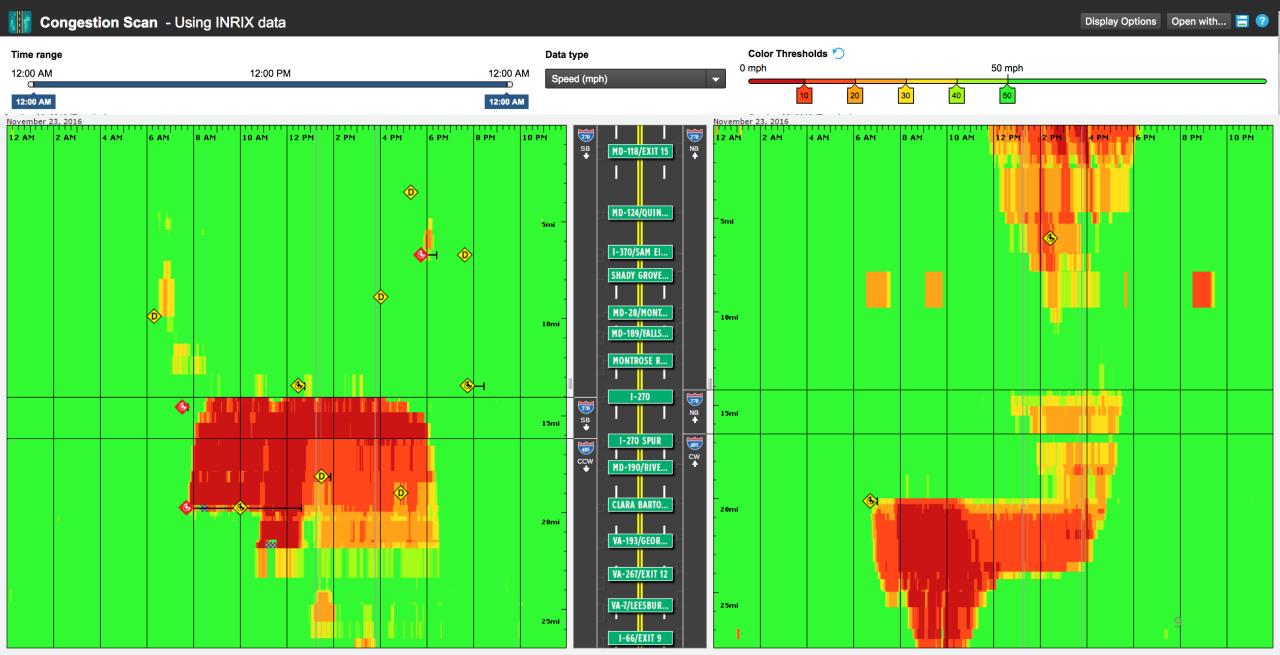
Why tools for TSMO?

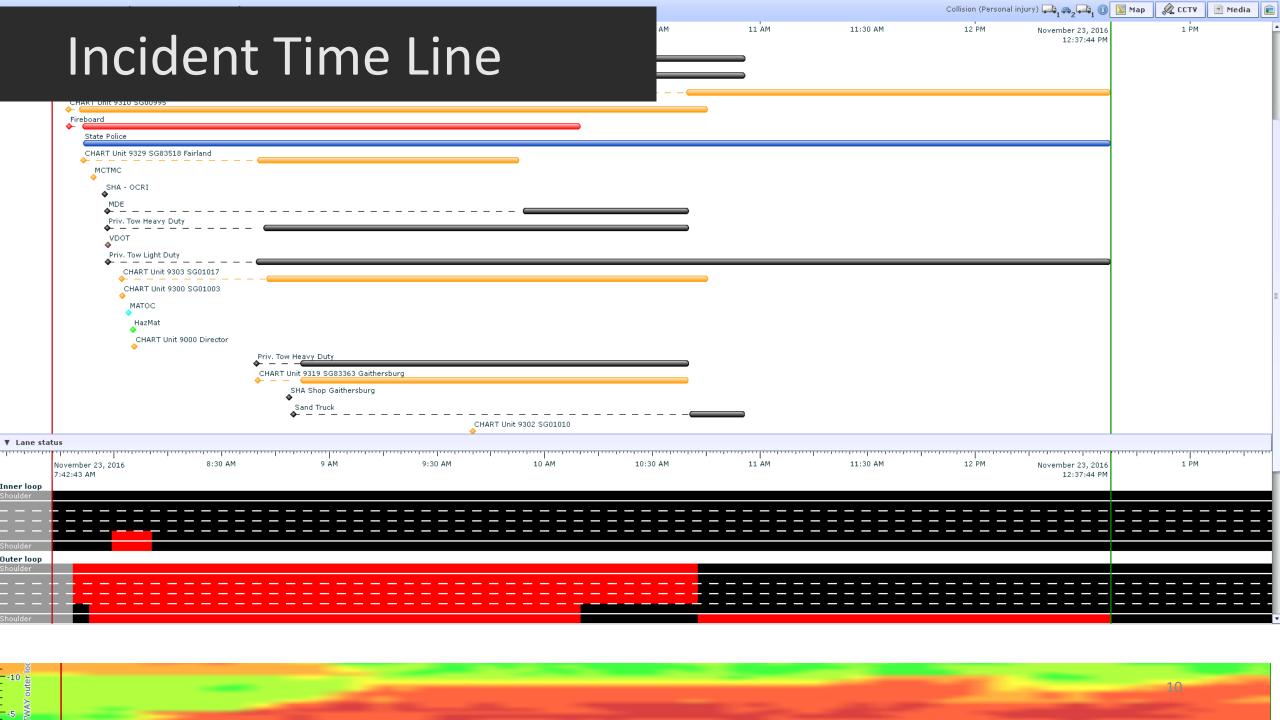

- 1. A view of live operations
- 2. Document & report what happened
- 3. Plan for future operations
- 4. Make the case for funding
- 5. Post-mortem to improve operations


TSMO tools for operators & responders

- Situational Awareness map layers (SA)
- Incident Time Line (TIM)
- Work Zone Performance Monitoring (WZPM)
- RITIS Meeting for event collaboration (RM)
- Distribution channel for contingency plans
- Virtual Weigh Station remote monitoring (VWS)

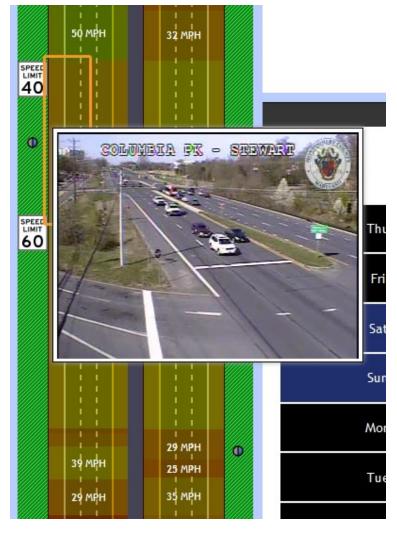

Documented Situational Awareness


Probe Data Analytics (PDA)




PDA Trend Map

PDA Congestion Scan


User Delay Cost in PDA

		12 AM	1 AM	2 AM	3 AM	4 AM	5 AM	6 AM	7 AM	8 AM	9 AM	10 AM	11 AM	12 PM	1 PM	2 PM	3 PM	4 PM	5 PM	6 PM	7 PM	8 PM	9 PM	10 PM	11 PM	Daily Totals
11/2	3/16	\$0.1K	\$0.1K	\$0K	\$0K	\$0.1K	\$0K	\$5.8K	\$50.9K	\$130.8K	\$165.7K	\$155.5K	\$122.4K	\$91K	\$86.5K	\$126.8K	\$127.3K	\$86.2K	\$47K	\$5.6K	\$0.5K	\$7.6K	\$4.9K	\$0.1K	\$0K	\$1,214.8K
Hou Tot	urly als	\$0.1K	\$0.1K	\$0K	\$0K	\$0.1K	\$0K	\$5.8K	\$50.9K	\$130.8K	\$165.7K	\$155.5K	\$122.4K	\$91K	\$86.5K	\$126.8K	\$127.3K	\$86.2K	\$47K	\$5.6K	\$0.5K	\$7.6K	\$4.9K	\$0.1K	\$0K	Grand Total \$1,214,838.32

- Normal Delay = \$150k
- Total this day = \$1.2M
- Extra resulting from this event = \$1.05M
 - This is conservative as it does not:
 - Include extra delay on 495 to the east
 - Delay on other arterials
 - Excess fuel consumption
 - Emissions
 - Secondary incidents

COMPARISON TO HISTORIC AVERAGE **↓ SOUTH ↓** † NORTH † 12 m 1 MPH (-2%) -2 MPH (-3%) -13 MPH (-21%) 12 MPH (-20%) -2 MPH (-3%) +5 MPH (10%) -2 MPH (-4%) +11 MPH (22%) 2 MPH (-4%) 3 m 6 MPH (-10%) 0 MPH (0% -13 MPH (-25%) +2 MPH (4% -14 MPH (-30%) +3 MPH (8%) +14 MPH (27%)

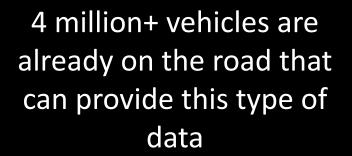
Remote Oversight & Documentation of Work Zones

0.8 miles +2 MPH (3% +3 MPH (5%) +4 MPH (6%) 0.0 miles +8 MPH (14%) +3 MPH (5% -39 MPF +2 MPH (3%) Road Maintenance Operations Location I-83 SOUTH AT EXIT 27 MD 137 MT CARMEL RD Started 3/26/2015 9:04 AM

Bottlenecks & Nearby Events

Live CCTV & DMS

Odometer



Data streams from Connected Vehicles are here TODAY!

Powerful automated reports

Bring your own device

routing

ice

Driver behavior scorecards

Real-time alerts & automated reports

Fleet Intelligence Dashboard

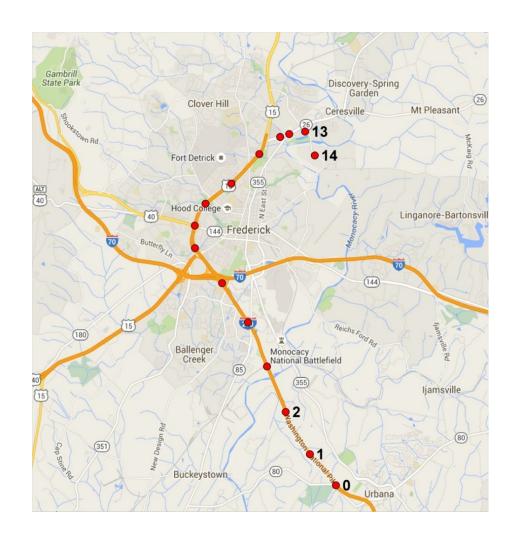
Mobile view for supervisors on the move

Weather

Traffic

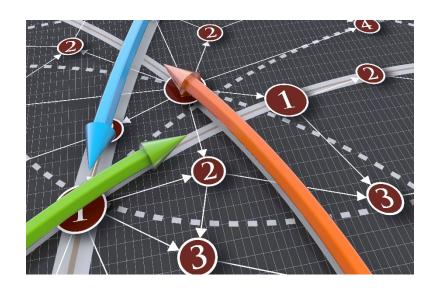
Animated vehicle history

DOT compliance


A day in D.C. 6 Heavy Braking Fast Wiper Use events by 300 vehicles Abnormal Fuel Consumption High % of abnormal freight re-routing Red Signal in 2.5 seconds 23 Traction Rollover Control Engagements 05:00 am

Trajectory Data

- Passively collected time stamped location data based on individual trips
 - Departure time and location (trip origin)
 - Route selection and travel time
 - Arrival time and location (trip destination)
 - All personally identifiable info is removed

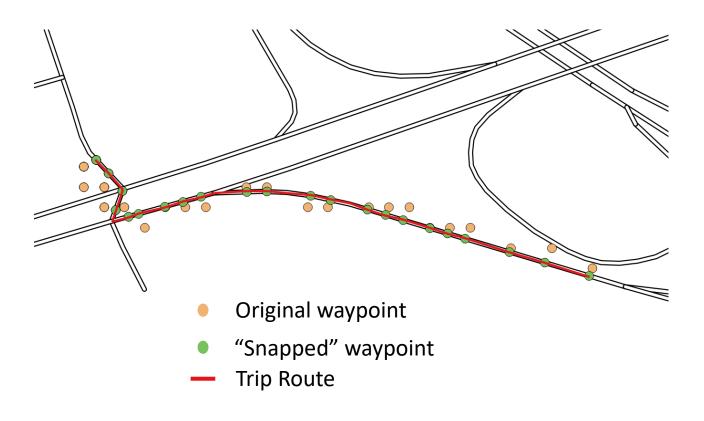

Applications

Understand...

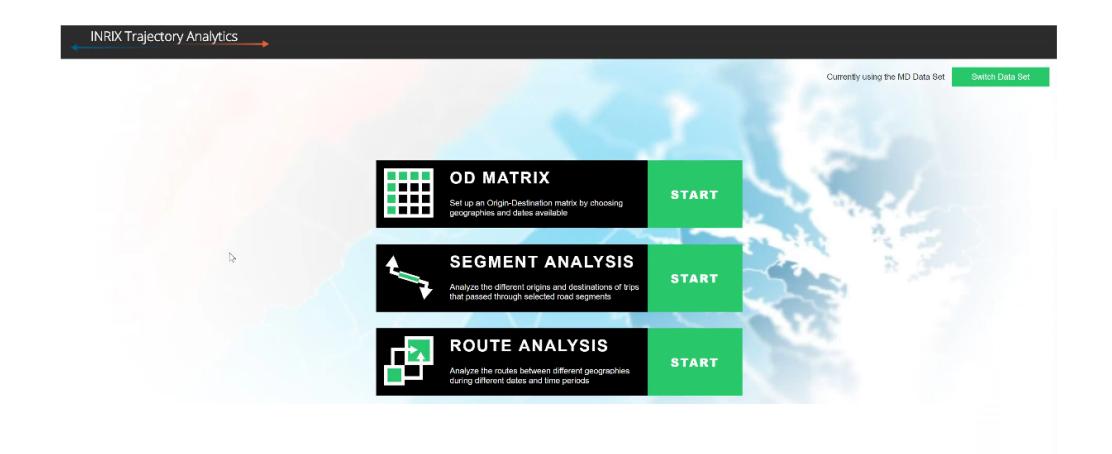
- Origin-Destination Patterns
- Mode and Route Selection
- Trip Travel Time

So you can...

- Asses network performance
- Drive policy changes
- Inform decisions on transportation system investment


Before analysis begins:

Ingest Very Big data


- 4 Months for MD
 - 20 Million trips
 - 1.4 Billion waypoints
 - 112 GB of data

Clean it

- Snap waypoints to roads
- Determine route(s)

New Suite of Tools: Trajectory Analytics

Developing a "pass through" trip map visualization

INRIX Trajectory Analytics Welcome to the OD Data Suite Please choose one of the available data sets to explore: DATA SETS DATA PROVIDER **DATE RANGE DETAILS** INRIX February, June, July, October 2015 Temporal Data Granularity: 1 Second Spatial Data Granularity: Latitude/Longitude Vehicle Types Included: Cars and Trucks (separated or aggregated) Maryland Data Set Waypoints Included: Yes INRIX February, June, July, October 2015 Temporal Data Granularity: 1 Second Spatial Data Granularity: Latitude/Longitude Washington DC Vehicle Types Included: Cars and Trucks (separated or aggregated) Metropolitan Statistical Waypoints Included: Yes Area Data Set INRIX January, February, March, April, May, June, July, August, Temporal Data Granularity: 1 Second September, October, November, December 2015 Spatial Data Granularity: Latitude/Longitude Vehicle Types Included: Cars and Trucks (separated or aggregated) Washington DC Data Set Waypoints Included: Yes

Another new suite of tools: (name TBD)

Signalized Grid Performance Monitoring

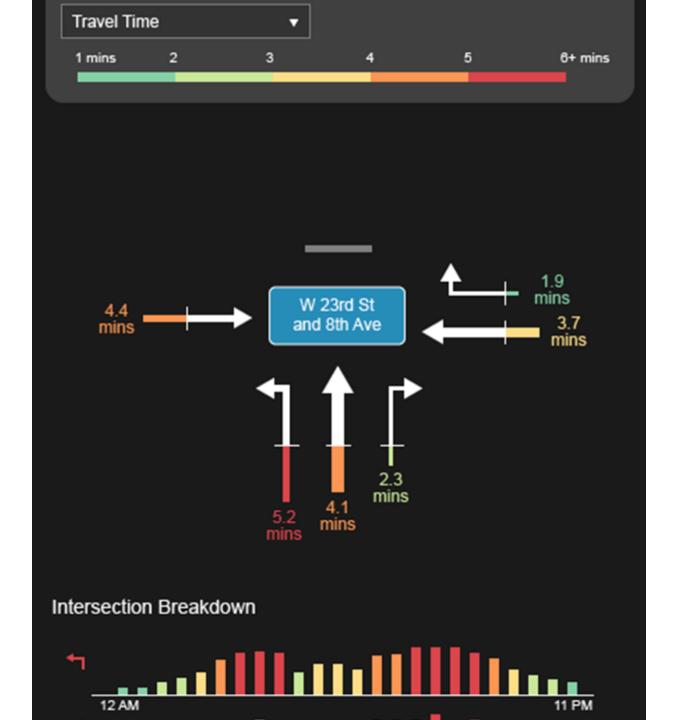
Using New Data Sources

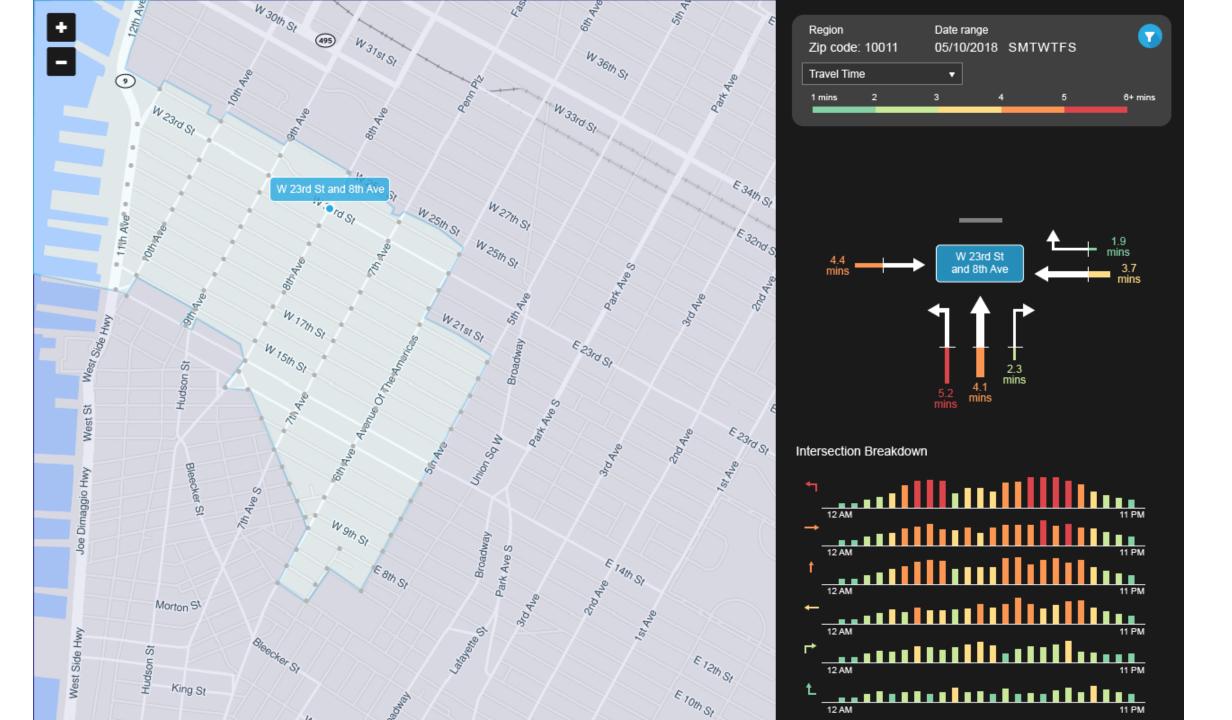
(the SGPMUNDS Suite?)

25th St INTERSECTION ANALYSIS TOOL Lorem ipsum dolor sit amet, consectetur adipiscing elit. Integer ultrices nibh lacus, eget blandit sapien sagittis sed. W 25th St 1. Select a region or intersection Region Select a state New York Select a county W 24th St W 24th St New York Select a zip code W 24th St Enter zipe code.. N Zand SI Intersection 2. Select a date range W 23rd St 05/10/2018 -through- 05/10/2018 WaandSI Select days of week Find Intersection W21st St W 22nd St W21stSt W 20th St

Fashion Institute

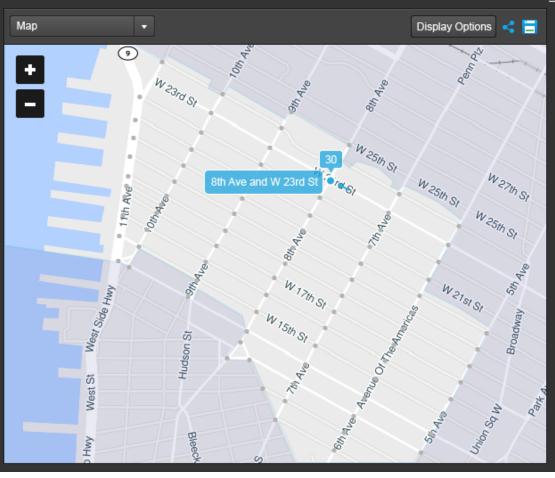
Of Technolog

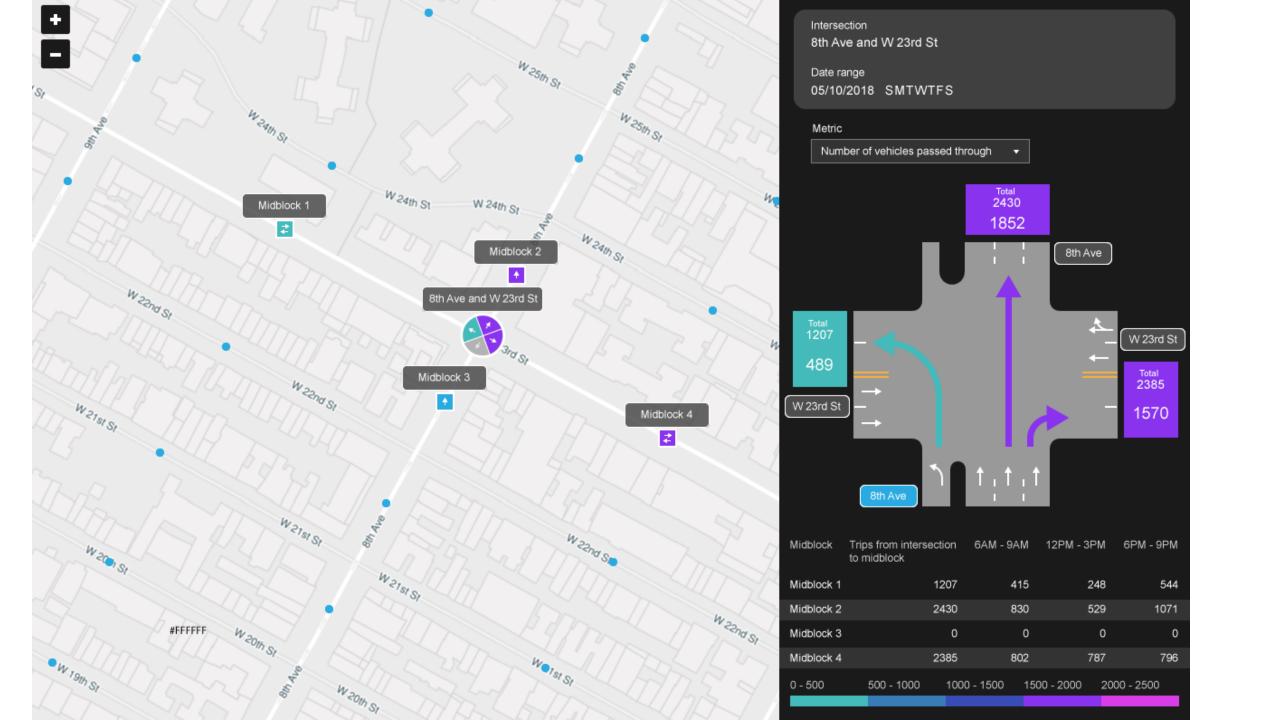

W26th St


W 25th St

W ZAIN SI

W 22nd St


W 23rd St



Ranked intersection movements in the 10011 zip code for the date range of 05/06/18 through 05/12/18

Rank	Мар	Intersection	Approach	Movement	Volume	User Delay Cost	▲ Average Travel Time	25th Precentile	75th Precentile	5th Precentile	95th Precentile
1	✓	8th Ave at W 23rd St	Northbound	Left	489	\$4,235.00	5.5 mins	2.5 mins	7.2 mins	1.5 mins	7.5 mins
2		W 20th St at 8th Ave	Eastbound	Through	761	\$4,194.00	5.2 mins	2.1 mins	6.9 mins	1.4 mins	7.1 mins
3		W 19th St at 9th Ave	Westbound	Left	504	\$4,895.00	5.0 mins	2.1 mins	6.8 mins	1.4 mins	6.9 mins
4		W 23rd St at 8th Ave	Eastbound	Through	210	\$2,305.00	4.9 mins	1.7 mins	7.1 mins	1.2 mins	7.2 mins
5		W 20th St at 8th Ave	Westbound	Left	354	\$3,204.00	4.7 mins	1.8 mins	6.6 mins	1.3 mins	6.8 mins
6		7th Ave at W 17th St	Southbound	Through	159	\$2,987.00	4.7 mins	1.5 mins	6.3 mins	1.2 mins	6.6 mins
7		W 15th St at 11th Ave	Westbound	Left	263	\$2,516.00	4.5 mins	1.4 mins	6.0 mins	1.1 mins	6.5 mins
8		W 19th St at 6th Ave	Westbound	Right	186	\$1,425.00	4.4 mins	0.8 mins	5.8 mins	0.6 mins	6.2 mins
9		W 14th St at 7th Ave	Eastbound	Through	218	\$1,546.00	4.3 mins	1.5 mins	5.6 mins	1.0 mins	6.0 mins
10		W 21st St at 10th Ave	Eastbound	Left	135	\$1,204.00	4.0 mins	0.7 mins	5.5 mins	0.5 mins	6.0 mins

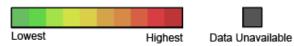
Self-creating, dynamic dashboards

PDA Dashboard for real time traffic monitoring

A Turnpike Closure Travel Times into NJ (includes NJ) Corridor	Differential	Current	Historic	Differential	Current	Historic
JS-1 Northbound between I-276/Pennsylvania Tpke and I-95	▼ 8	50 mph	58 mph	↑ 1	07 min	06 min
(-95 Northbound between US-1/Exit 46 and PANJ State Border	↓ 1	63 mph	64 mph	0	05 min	05 mir
(-95 between PANJ State Border and US-1/Exit 67 Northbound	0	63 mph	63 mph	4 1	10 min	09 mir
-295 between US-1/Exit 67 and Exit 60 Southbound	1	66 mph	65 mph	0	07 min	07 mir
-195 between I-295/Exit 60 and Exit 7 Eastbound	▼ 18	39 mph	57 mph	4 3	09 min	06 mir
NJ-29 between I-95 and US-1 (TRENTON) (SOUTH) Southbound	♦ 6	39 mph	45 mph	4 1	08 min	07 mir
NJ-29 between US-1 (TRENTON) (SOUTH) and I-195/I-295/Exit 60 Southbound	▼ 13	30 mph	43 mph	4 3	09 min	06 mir
JS-1 Northbound between I-95 and PANJ State Border	↓ 5	65 mph	60 mph	0	06 min	06 mir
JS-1 between PANJ State Border and I-295/I-95 Northbound	↓ 3	46 mph	49 mph	0	08 min	08 mii
10S - 413 (PA/NJ) - I-95 to US 130	↓ 1	23 mph	24 mph	4 1	09 min	08 mii
(-295 between Exit 60 and US-130/Exit 57 Southbound	↑ 2	67 mph	65 mph	0	02 min	02 mir
sing INRIX data	•			Up defeat Co	b 2 2017 4:33	PM (21s ago)
A Turnpike Closure Travel Times into PA (includes NJ)						
Corridor	Differential	Current	Historic	Differential	Current	Historic
JS-1 Southbound between I-95 and I-276/Pennsylvania Tpke	★ 43	13 mph	56 mph	↑ 23	29 min	06 mii
-95 Southbound between PANJ State Border and US-1/Exit 46	0	60 mph	60 mph	0	05 min	05 min
-95 between PANJ State Border and US-1/Exit 67 Southbound	↑ 2	59 mph	57 mph	+1	10 min	11 mir
-295 between US-1/Exit 67 and Exit 60 Northbound	0	66 mph	66 mph	0	07 min	07 mir
-195 between I-295/Exit 60 and Exit 7 Westbound	▼ 18	44 mph	62 mph	∳ 3	10 min	07 mir
J-29 between US-1 (TRENTON) (SOUTH) and I-95 Northbound	↓ 2	42 mph	44 mph	4 1	08 min	07 mir
NJ-29 between US-1 (TRENTON) (SOUTH) and I-195/I-295/Exit 60 Northbound	★ 3	52 mph	55 mph	0	04 min	04 mir
JS-1 Southbound between PANJ State Border and I-95	♦ 3	51 mph	54 mph	0	07 min	07 mir
JS-1 between PANJ State Border and I-295/I-95 Southbound	4 4	52 mph	48 mph	† 1	07 min	08 mir
ION - 413 (PA/NJ) - US 130 to I-95 (PA)	↓ 5	18 mph	23 mph	♦ 2	10 min	08 mii
-295 between US-130/Exit 57 and Exit 60 Northbound	↓ 1	65 mph	66 mph	0	02 min	02 mii
sing INRIX data				Updated Fe	Ь 2, 2017 4:33	PM (22s ago)
avel Time US 1/I-95 (PA) to Tpk Exit 7 (NJ)						
Corridor	Differential	Current	Historic	Differential	Current	Historic
JS 1 (PA) to Exit 7 (NJ) via 95 JS 1 (PA) to Exit 7 (NJ) via US 1/NJ 29	♦ 9	53 mph	62 mph	↑ 5	35 min	30 mir
	▼ 17	37 mph	54 mph	▲ 11	32 min	21 min

Build and save Dashboards for single event or on-going traffic monitoring, impact mitigation assessment or after action reviews.

User Delay Cost Table



Hide Map

Year	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Annual Total
2018	\$90.9M	\$101.2M	\$129.5M	\$120.9M	\$159.1M								
2017	\$81.2M	\$75.4M	\$114.5M	\$120.3M	\$142.4M	\$136.1M	\$113.8M	\$113.6M [*]	\$116.7M	\$133.5M	\$134.6M	\$123.7M	\$1.4T
2016	\$105.8M	\$89.7M*	\$92.5M	\$104.9M	\$119.2M	\$132.7M	\$104.2M	\$116.9M	\$118.8M	\$120.4M	\$124.7M	\$105.7M	\$1.3T

Legend

Based on lowest value of all years to highest value of all years

*Missing data; below 60% of data available

User Delay Cost Table

Maryland Statewide User Delay Cost

Month	2018	Differential	2017
Jan	\$90.9M	♠ \$9.7M	\$81.2M
Feb	\$101.2M	♦ \$25.8M	\$75.4M
Mar	\$129.5M	♠ \$15.0M	\$114.5M
Apr	\$120.9M	♦ \$0.6M	\$120.3M
May	\$159.1M	♦ \$16.7M	\$142.4M

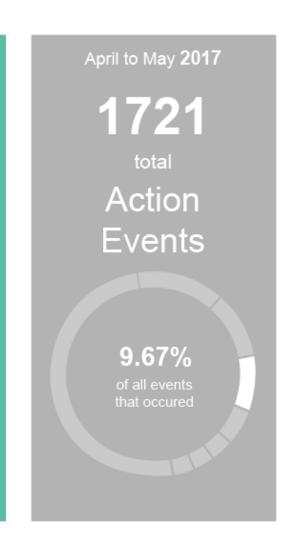
.

Show Map

Reliability Ranking Table

AM Peak

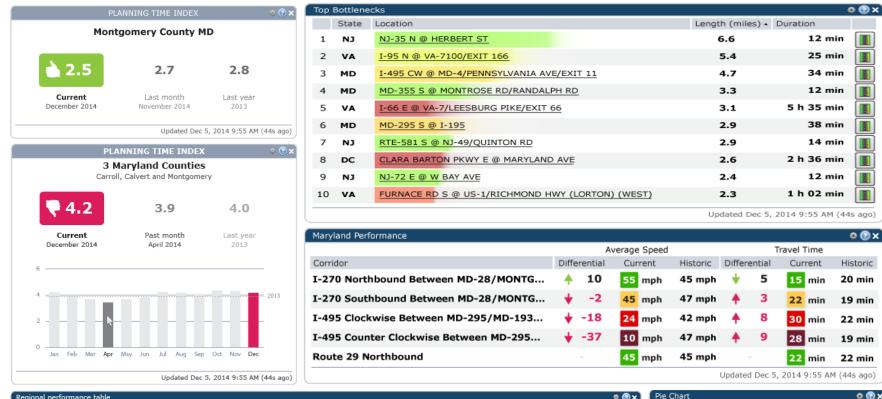
May 2018 Least Reliable Locations


	Location	Reliability ▲	Differential	April's Reliability
1	I-95	20%	♦ 8 %	12%
2	I-295	29%	2 %	27%
3	I-270 SPUR	30%	4 %	26%
4	I-495	35%	<mark>♦</mark> - 2%	37%
5	Greenspring AVE	37%	♦ 3 %	34%
6	Huntington PWKY	47%	7 %	40%
7	Edmondson AVE	49%	4 %	45%
8	Frederick RD	53%	♥ - 4 %	57%
9	Baltimore AVE	56%	♥ - 5%	61%
10	Guilford RD	64%	<mark>♦</mark> - 2%	66%

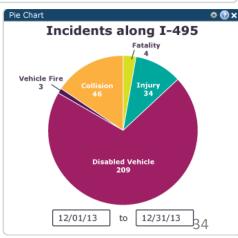
Event Count Table Maryland **Event Types** April 1, 2018 to May 31, 2018 Disabled Vehicle April to May 2018 Incident 2234 Planned Roadway Closure total Action Action Event **Events** Safety Message Weather Service Alert

Special Event

Recurring Congestion



10.26%


of all events that occured

Transportation Analytics: Self-creating, ever-changing Dashboards

Each widget can be laid out in a single page view that can be recalled by the user quickly and easily.

For additional information:

Greg Jordan

UMD CATT Lab

gjordan1@umd.edu

Working Lunch

Woodrow Wilson Bridge AAR Review Meeting Briefing

Taran Hutchinson

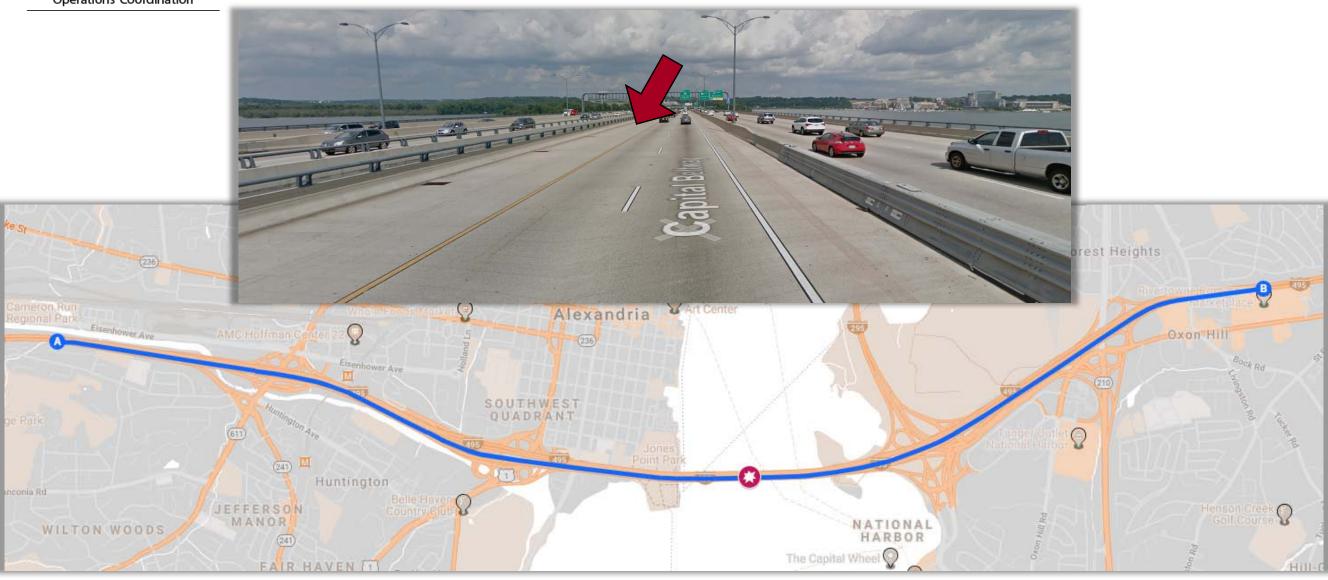
Metropolitan Area Transportation Operations Coordination (MATOC)

Metropolitan Area Transportation Operations Coordination

Tractor Trailer Crash & Fire Woodrow Wilson Bridge (June 20, 2018)

Taran Hutchinson MATOC Facilitator

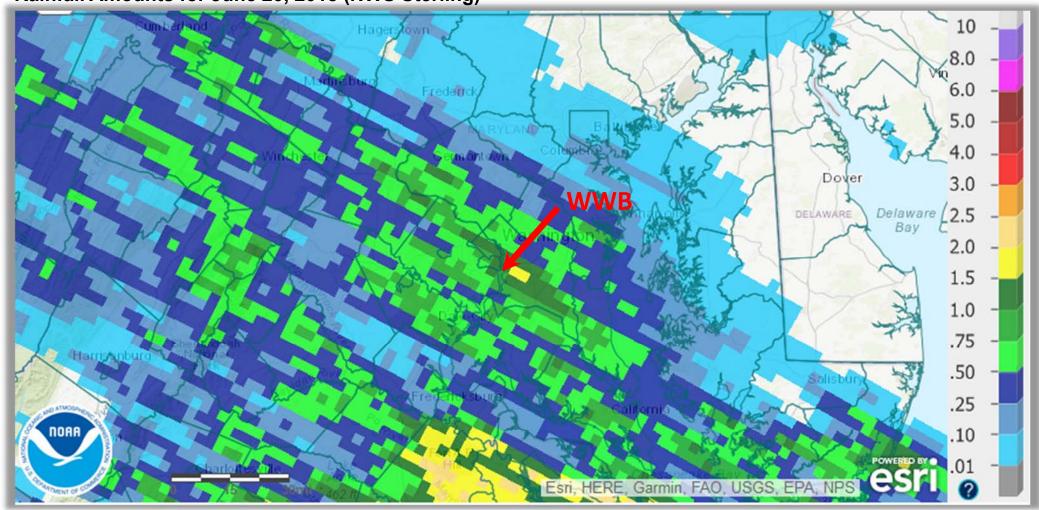
Wednesday, June 20, 2018 (late morning)



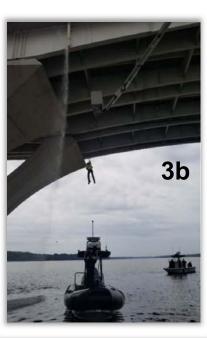
Incident Location: I-95/495 NB Outer Loop Thru Lanes

Incident Summary

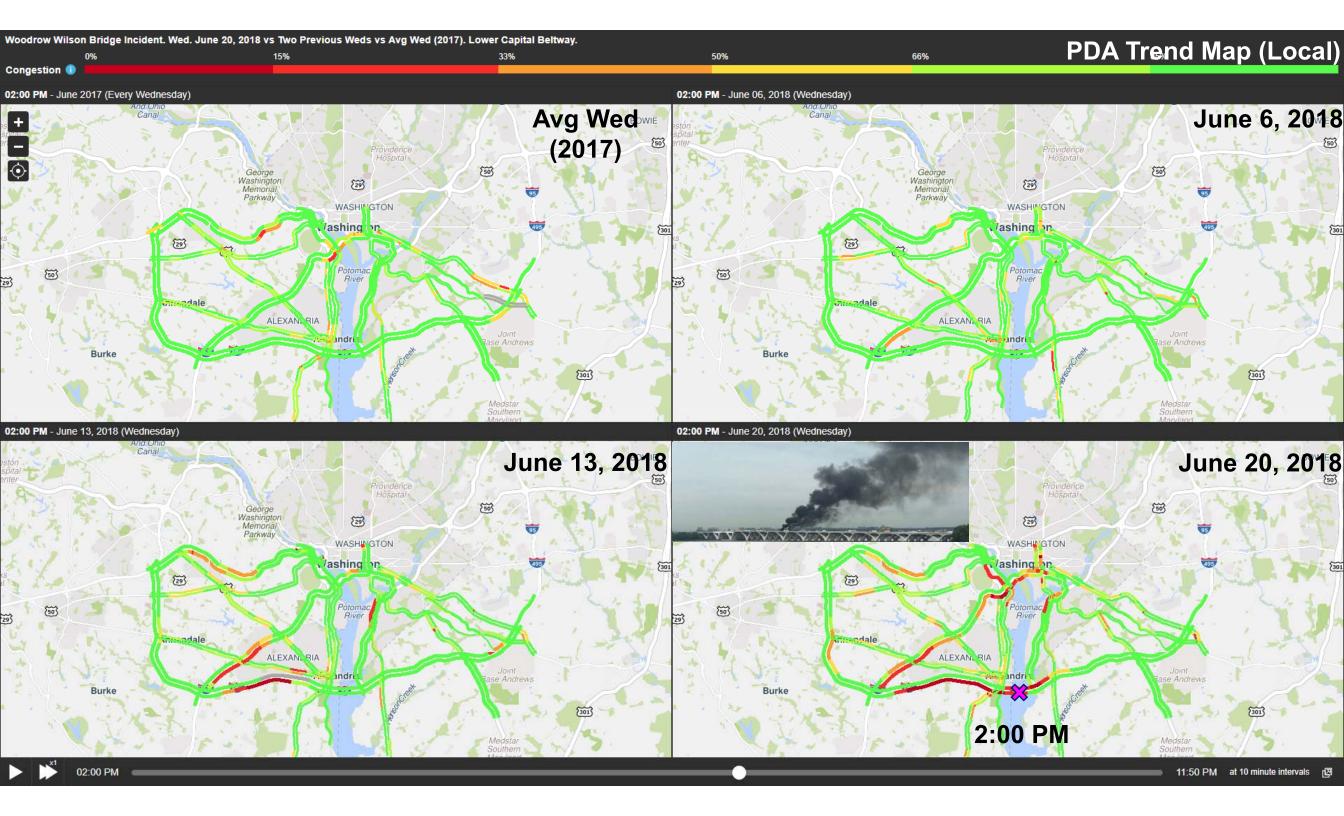
- Wednesday, June 20, 2018 (~10:45am)
- Tractor Trailer Crash & Fire. I-95/495 NB (Outer Loop) Thru Lanes on Woodrow Wilson Bridge, Prince George's County, MD
 - Bridge inspection attenuator truck, snooper truck, and pickup struck
 - Involves a fatality (tractor trailer driver)
 - Rescue of trapped work crew below the bridge
 - Temporary closure of the bridge (all lanes)
 - Extensive recovery and cleanup operations required
 - Northbound Outer Loop Thru Lanes closed for most of the day
 - Late afternoon/early evening precipitation
- Planned Events
 - Midday Rally/March near the National Mall and Pennsylvania Ave (5,000+)
 - Evening MLB Event: Baltimore Orioles at Washington Nationals (41,000+)

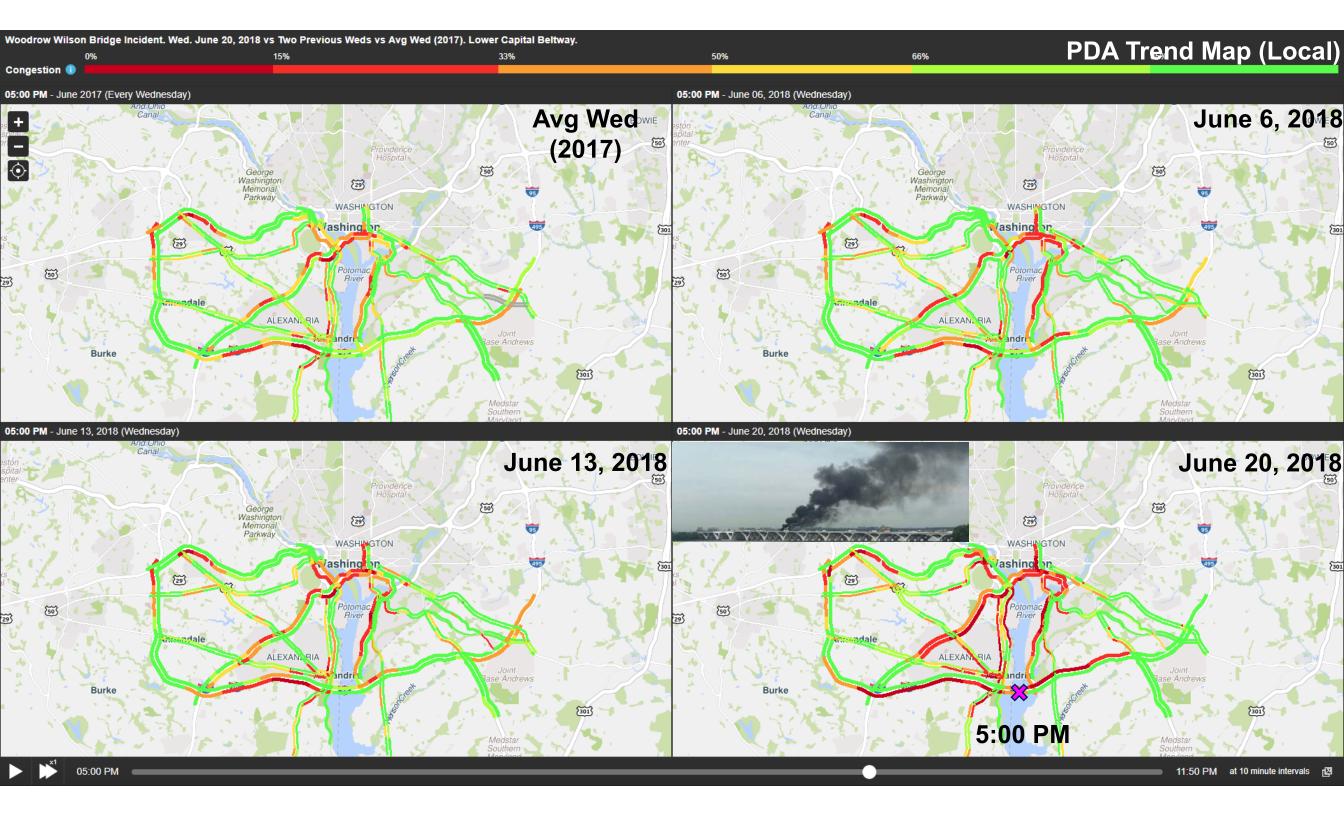


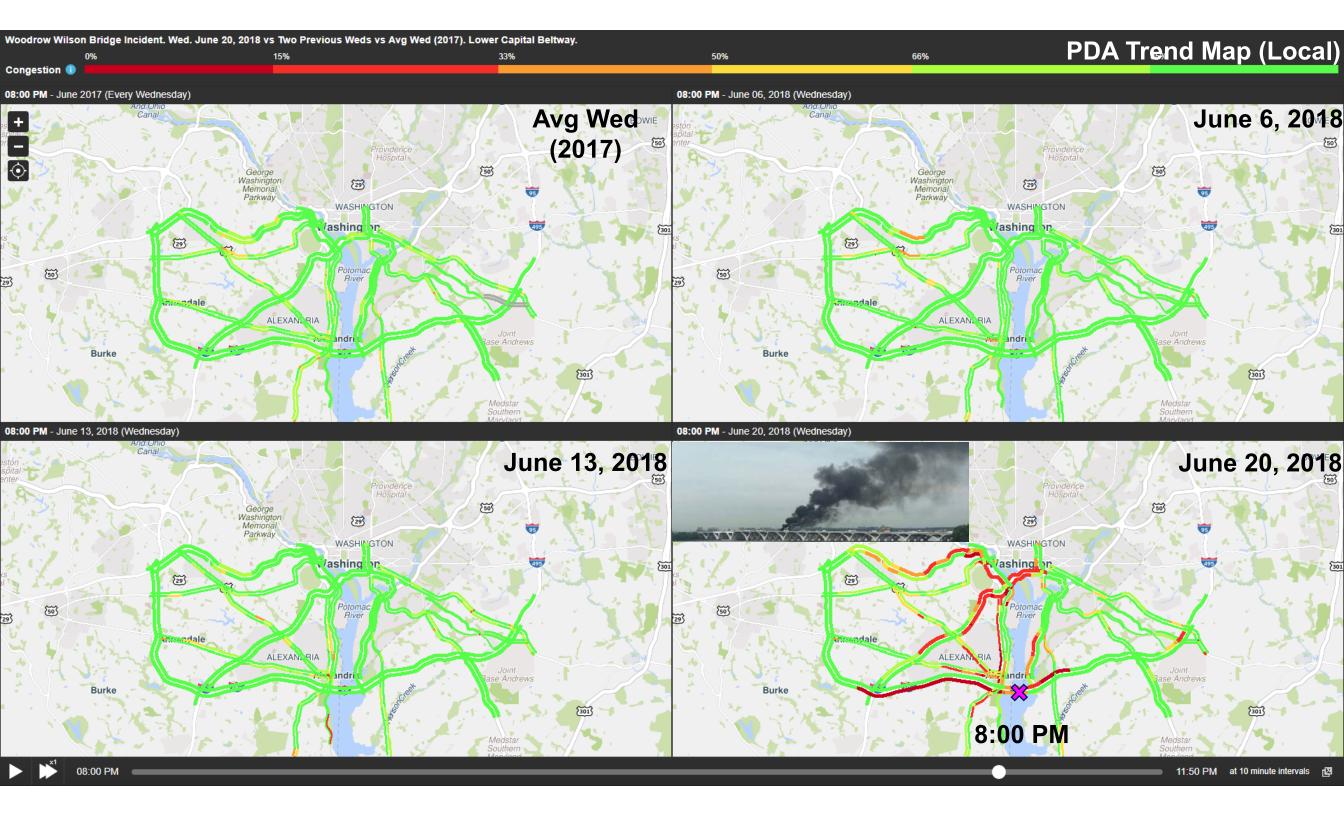
Incident Scene: Weather



Incident Scene: WWB NB Thru Lanes







Probe Data Analytics Suite: User Delay Cost

User Delay Cost: WWB "Triangle" (I-495, I-395, I-695, I-295)

Generated via Probe Data Analytics Suite Using INRIX speed data

	Daily Totals	
2018	Vehicle Hours of Delay	Total Cost (\$)
Wed, May 9	31,809	\$960,564
Wed, May 16	45,140	\$1,363,134
Wed, May 23	39,511	\$1,193,130
Wed, May 30	20,922	\$631,794
Wed, June 6	33,479	\$1,010,999
Wed, June 13	45,028	\$1,359,735
Wed, June 20	104,440	\$3,153,861
Wed, June 27	30,916	\$933,589

MATOC Regional Tabletop Exercise (TTX) Wednesday, June 20, 2018

- Alexandria, Virginia (2.5 miles from the incident scene)
- Evaluate how MATOC member agencies and area first responders communicate and coordinate in response to several traffic incidents in and around DC leading up to and including a day long closure of Potomac River crossing
 - Scenario involved a stolen vehicle, multiple incident scenes, major crashes and fire on the Woodrow Wilson Bridge
 - Seasonal and planned events were considered in this plausible scenario
- Participating Agencies
 - DDOT, MDOT/SHA, VDOT, WMATA, MWCOG, I-95 Corridor Coalition, MATOC
 - Alexandria DASH, Arlington Transit, Fairfax County Connector, Prince George's County DPW&T, PRTC/OmniRide, Transurban, DBI (TAMS Contactor)
 - National Park Service/US Park Police, DC Metropolitan Police Department, Maryland State Police, Virginia State Police and other local first responders
 - MATOC Operations were offline for the day to support the exercise

MATOC Regional Tabletop Exercise (TTX)

- Focused on Center-to-Center, Field-to-Field, and Regional communication and coordination
 - Evaluate current capabilities
 - Identify information gaps and best practices
- Takeaways
 - Agencies is the region have well developed incident response plans and know who to call
 - Not all agencies have access to or monitor the Washington Area Warning and Alert System (WAWAS). MATOC's Transportation Mutual Aid Radio System (TMARS) may be useful for transportation agencies but is relatively new and limited in coverage
 - Freeway Incident Traffic Management (FITM) Plans can be a challenge to set up given that by the time resources are mobilized, the incident is clearing up
 - Official agency emails/alerts, phone calls, CAD information are preferred over media reporting
 - Transit agencies are not as integrated with public safety agencies like traditional DOTs
 - MATOC should host similar training events at least once a year, semi-annual events preferred
 - Attending training is a challenge given most participants are considered essential personnel

MATOC WWB After Action Review (AAR)

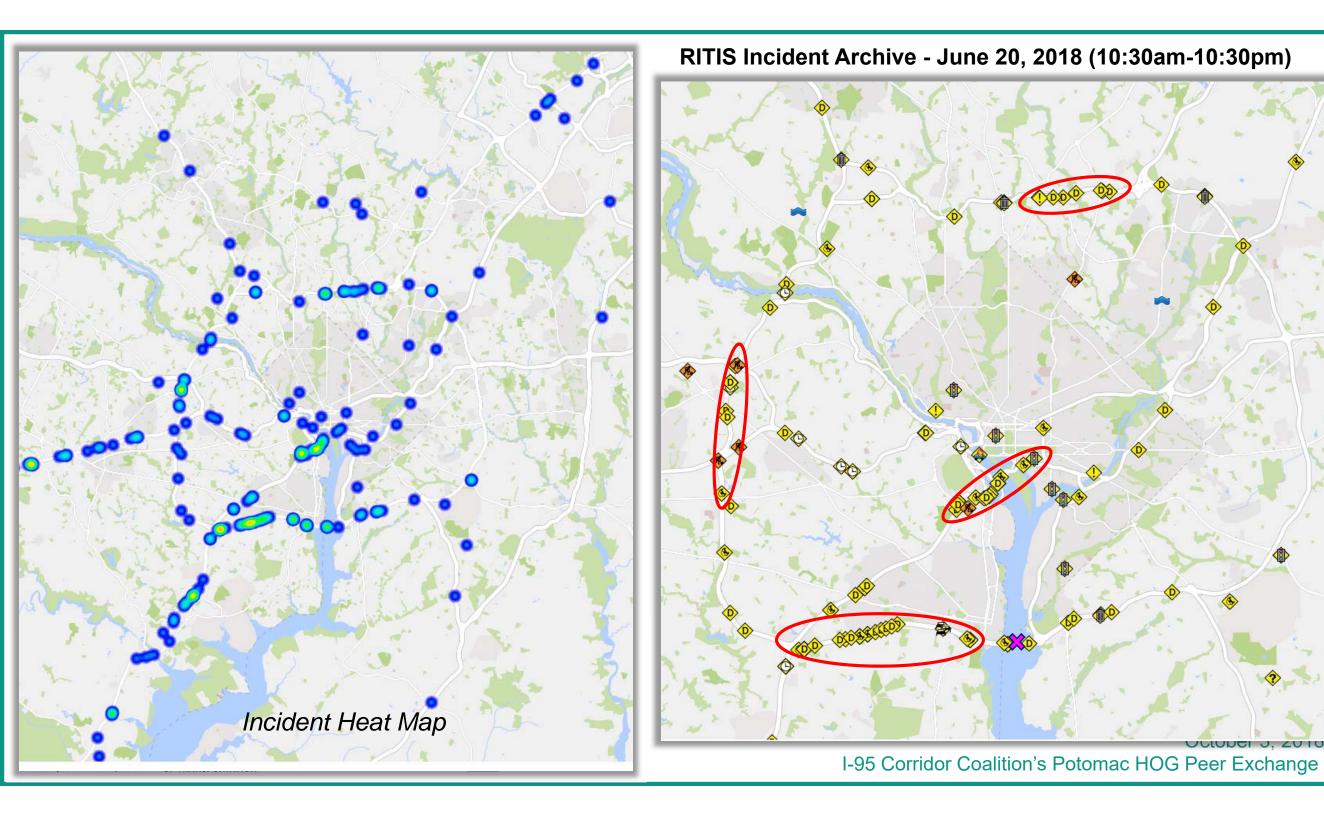
- Transportation focused AAR
- Evaluate how state and local departments of transportation and public transportation agencies were impacted by the June 20,2018 Woodrow Wilson Bridge incident
- Identify what worked well during the response and recovery from this incident as well as identify areas of improvement
- Agencies Invited
 - DDOT, MDOT/SHA, VDOT, WMATA, MWCOG
 - Alexandria DASH, Arlington Transit, Fairfax County Connector, Prince George's County DPW&T, PRTC/OmniRide, Transurban, DBI (TAMS Contactor)
 - DC Metropolitan Police Department, Maryland State Police, Virginia State Police and other local first responders
 - Not all agencies were able to attend

MATOC WWB AAR: Takeaways

- Overall the response to this major traffic incident was a success, there were no failure points
- The coordination and collaboration between agencies was great given the complexity of the incident; incident type, location, facility involved, large response
- There were some communication challenges as there was not a designated Command Post or Unified Command established
- VDOT response vehicles are not classified as emergency vehicles and would have been delayed in getting to the scene (MDOT SHA assisted VDOT IMCs in getting to the scene quickly)
- TMARS was not used for this incident as most of the participating agencies were onsite
- Having the right towing and recovery units respond was critical for this incident
 - There are only a couple of companies in the area that could have successfully recovered the damaged boom

MATOC WWB AAR: Takeaways

- There was a delay in opening the retractable barrier closest to the scene that would have provided quickest way relieve queued Thru Lane traffic
 - This had cascading effects and lead to a delay in releasing northbound Local Lane traffic
- Fire departments found challenges in getting water onto the bridge as standpipes were not working as expected
- Delays were noted in clearing Fire and EMS crews once lanes we ready to be opened; however it was recognized that maintaining scene safety is a priority for fire departments
- Area public transportation systems were adversely impacted as bridge related delays extended onto local arterials
 - Alexandria DASH bus service was severely impacted as local streets were gridlocked
 - WMATA Metrobus service across the bridge as well as downtown was severely impacted
 - Metrorail was a preferred mode of travel to avoid surface roadway delays
 - PRTC Omniride Commuter Bus service was impacted due to events in the District as well as the increased congestion caused by the bridge incident


MATOC WWB AAR: Takeaways

- Agency PIOs worked with media to get information out to the public to manage expectations
- Queued motorists sometimes self diverted, often reversing down onramps which created additional hazards
 - Stresses the importance of knowing alternate routes
 - Highlights the challenges of vehicle/smartphone navigation systems
- To reduce the impacts of rubbernecking, personnel were positioned near the incident to wave motorists through in an effort to keep traffic moving; proved to be effective
- There were numerous minor secondary incidents in queued traffic, including an increase in incidents on roadways that served as alternate routes

MATOC WWB AAR: Recommendations

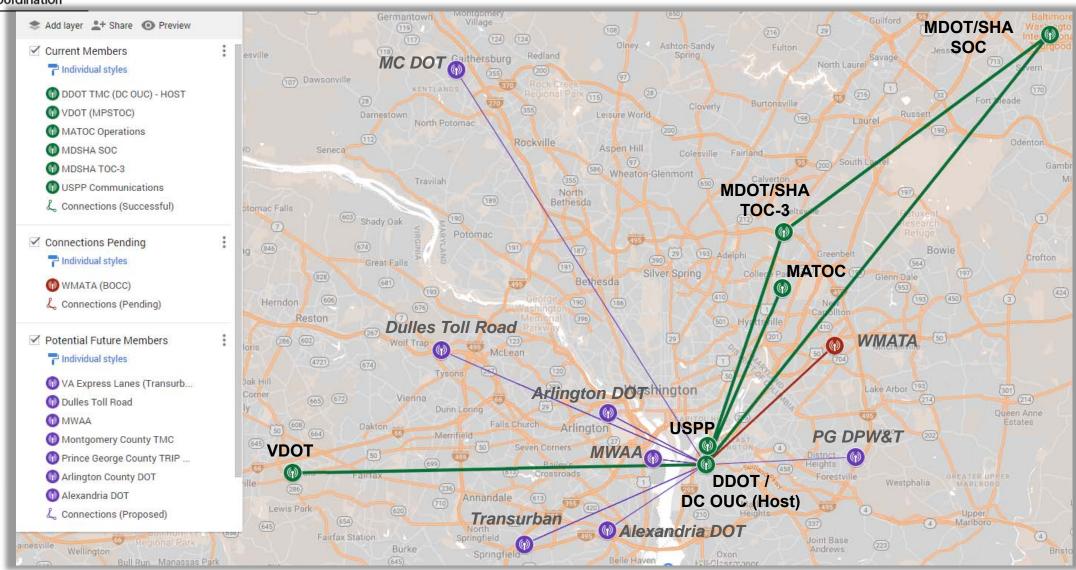
- Examine Unified Command and Command Post locations as they related to the Woodrow Wilson Bridge
- Regularly train responders on how to operate and open the retractable barriers to address staff turnover
 - Get the barrier(s) back into a state of good repair
- Explore opportunities to conduct bridge related training for DOTs and responders
- Expand TMARS access to select field users like Incident Management Coordinators
- Consider periodic reporting via conference calls for major incident; similar to MATOC's current practice with its severe weather and transit groups
- Update and share Maryland and Virginia FITM plans; including updates in RITIS
- Explore conducting a broader multi-jurisdiction/multi-discipline after action review for this incident

Transportation Mutual Aid Radio System (TMARS)

- Originally proposed in 2016 to provide an additional communication channel to support MATOC member agencies
- Serves as 1) a backup radio communication channel for center-to-center communications and 2) provides a dedicated transportation channel for DOTs to make quick notifications and to support coordination efforts
- VDOT summited an application for UASI funding to support the project;
 application was tabled
- MATOC member agencies decide to move forward on their own utilizing existing infrastructure
 - DC Office of Unified Communications assisted DDOT in identifying an available talk group on DC's 800Mhz radio system
 - Participating agencies agreed to procure, program, and maintain their own radio equipment
- Testing was conducted in the Spring of 2017 and the system was deployed on July 1, 2017

Transportation Mutual Aid Radio System (TMARS)

- MATOC Operations Subcommittee serves as TMARS governing body
 - Access is limited to the transportation sector; specially those agencies who have resources to deploy when major events occur
 - Participating agencies include DDOT TMC, MDOT SHA TOC-2 &SOC, VDOT NoVA TOC, US Park Police, MATOC Operations
 - The subcommittee agreed to extend invitations to area transportation agencies including local departments of transportation, MWAA, Dulles Toll Toad, Transurban
- MATOC Operations serves as the host for testing TMARS; Wednesdays at 12pm
- TMARS is currently limited by DC's radio coverage
- There is an ongoing effort to increase coverage; currently awaiting licensing
 - When it complete any transportation agency in the National Capital Region should be able to connect and participate on TMARS



Current TMARS Map

Questions?

Mr. Taran Hutchinson
MATOC Facilitator
Metropolitan Area Transportation Operations Coordination Program
5000 College Avenue, Suite 3121
College Park, MD 20742

taran.hutchinson@matoc.org

Phone: 301-405-7841

Interoperability in Radio Communications:

1. TMARS Taran Hutchinson / Mike Wood

Motorola WAVE Scott Yinger

3. Maryland Talk Groups and VDOT integration

Wrap Up

Meeting information and presentations will be posted to the I-95 Corridor Coalition website. Participants will receive a link to the presentations after they are posted.

Contact Information

I-95 Corridor Coalition

 Denise Markow, PE, I-95 Corridor Coalition, TSMO Director dmarkow@i95coalition.org, 301-789-9088

Co-Chairs

- Scott Yinger, MDOT-SHA SYinger@sha.state.md.us
- Soumya Dey, District DOT soumya.dey@dc.gov
- Kamal Sulliman, VDOT <u>kamal.suliman@vdot.virginia.gov</u>

I-95 Corridor Coalition Support

Joanna Reagle, KMJ Consulting, Inc. - <u>ireagle@kmjinc.com</u>

Thank You!