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Executive Summary

A secondary crash is a collision that happens as a result of another initial or primary crash—often
within the scene of the primary incident or in the resulting queue. These secondary crashes are
essentially a chain reaction of crashes where one ultimately triggers another. There is an oft-
quoted statistic that goes “the likelihood of a secondary crash increases by 2.8 percent for every
minute that a primary incident remains a hazard.” [1] Variations of this statistic have been
presented in FHWA reports on the benefits of traffic incident management, the International
Association of Chiefs of Police, numerous presentations, and related traffic safety studies ([2] and
[3]) The transportation industry has adopted this statistic as fact despite the origin being based
on an limited dataset covering a single roadway in Indiana from over 25 years ago. Updating this
statistical talking point with broader datasets is essential to maintaining the credibility of our
industry and our push for safety reforms.

The purpose of this research was to defensibly analyze and document the impact of incident
duration on the probability of a secondary crash occurrence. To accomplish this goal, we
conducted rigorous statistical analysis and probability modeling during a three-year, multi-state
analysis of secondary crashes. This study evaluated nearly 3-million crashes during 2022, 2023,
and 2024 in the states of Florida, Maryland, Tennessee, and Virginia. Our research determined
that the percentage of crashes that could be classified as secondary varied between each state
as shown in table below:

Percent of crashes that
are considered

secondary crashes.

Florida 4.8%
Maryland 3.9%
Tennessee 7.5%
Virginia 3.1%

One of the key contributions of this study is showing that the impact of each additional minute of
incident duration on the likelihood of a secondary crash is not constant but varies depending on
the total duration of the incident. This challenges the prior practice of reporting a single value to
represent the effect of duration. It is important to note that with a variable like incident duration,
we can interpret the effect on odds—defined as the probability of a secondary crash occurring
divided by the probability of it not occurring—but the actual probability depends on a combination
of other factors beyond duration alone. The figure below provides a view illustrating the impact of
each additional minute added to the primary incident duration on the odds of a secondary crash.
This study found that the impact of each minute of duration varies by the total duration of the
primary incident. In general, the impact on odds ratio is highest for short duration incidents (0-10
minutes), and gradually decreases with increased primary crash incident duration.
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Our key findings concluded the following:

1. Overall, for every minute a lane is blocked, the odds of a secondary crash can range from
less than 1% to 21%, depending on various incident factors.

2. For incidents lasting 0—10 minutes, approximately 0.5% to 1.6% of incidents led to a
secondary crash depending on the state. In this bin, each additional minute of duration
increased the odds of a secondary crash by 13% in Maryland, Virginia, and
Tennessee, but up to 21% in Florida.

3. Forincidents lasting 10-30 minutes, around 2% of cases in Florida and Virginia and around
4% in Maryland and Tennessee resulted in a secondary crash. In this bin, The odds of a
secondary crash occurring increased approximately 3% for each minute added to
the incident duration for all states.

4. Forincidents lasting 30-60 minutes, around 4% of cases in Florida and Virginia, and 6-7%
in Maryland and Tennessee resulted in a secondary crash. Within this bin, the odds of a
secondary crash increased by about 1.5% for each additional minute of incident
duration.

5. While the proportion of incidents that led to a secondary crash ranged from approximately
4% to 7% for 60—120 minute bins, to about 8% to 15% for the 120-300 minute bin, and
up to over 21% for the 300—-600 minute bin (varying by state), the increase in odds for
each additional minute of duration within these bins remained low— generally less
than 1%.

6. We confirmed existing literature that states secondary crashes tend to occur closer to the
start time of the primary crash.

Our research also concluded that characteristics of each crash played an important role in
increasing (or decreasing) the odds of a secondary crash occurring. For example:

o Severity: Crash severity was statistically non-significant in predicting the odds of a
secondary crash in Florida; however, in Tennessee, increases in injury severity increased
the odds of a secondary crash by 50%, relative to a minor crash.

e Capacity Reduction: In Maryland and Virginia, a 20-30 percent reduction in capacity
doubled the odds of a secondary crash, relative to no capacity reduction.

o Day of Week: For the impact of day of week (weekday or weekend), the results were also
mixed.

o The day of the week in which the crash occurred had little impact on secondary
incident odds in Virginia.

o In Maryland, the odds of secondary crashes were higher during the weekend.
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o In Tennessee and Florida, the odds of a secondary crash was 7-17 percent
higher on weekdays.

* Volumes: Higher traffic flows increased the odds of a secondary crash across all states.
e Weather: Inclement weather was found to increase secondary crash likelihood.

o Rain increased the odds by 200-250 percent relative to clear weather.

o Snow showed a large impact with increased odds of secondary crash of 550
percent in Maryland.

While the primary objective of this research was to investigate the impact of incident duration on
the probability of a secondary crash, the team made the following additional contributions:

e Conducted an in-depth review of recent studies in secondary crashes, highlighting
methods to identify secondary crashes and methods to model secondary crashes

o Established procedures to fuse disparate data sources into a master database for safety
analysis.

e Developed a methodology to identify secondary crashes using real-world speed data.

e Created and evaluated several secondary crash probability estimation models using
rigorous statistical methods to test the assumptions of each model. These models were
used to make inferences on the impact of key variables such as incident duration, weather,
capacity reduction, and flow rates on the probability of secondary crashes.

e Documented challenges related to best practices in traffic management system crash data
collection

¢ Made recommendations on the critical variables to collect to support secondary crash
inference modeling

The research team believes that the next logical step for this research is to take the methodologies
developed for historic secondary crash data analysis and modify them to function in real-time as
a secondary crash prediction tool that could be integrated into existing traffic incident
management decision support platforms. These prediction algorithms could engage at the onset
of an incident and provide traffic incident management decision makers with valuable insights on
an incident’s impact soon after detection and throughout the incident management process. This
information will enable proactive operational decisions which could improve safety and reduce
delays, fuel consumption, emissions, and property destruction.
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Introduction
Background

Traffic incidents are a major contributor to roadway congestion and safety concerns across the
United States. A 2022 study conducted by the Center for Advanced Transportation Technology
Laboratory found that in 2019, 18% of US traffic delay involved incidents as a contributing factor
[4]. The resulting dashboard of this study can be found at [5] . Among incidents, secondary
crashes—defined by the Federal Highway Administration (FHWA) as “unplanned incidents
(starting at the time of detection) for which a response or intervention is taken, where a collision
occurs either a) within the incident scene or b) within the queue (which could include the opposite
direction) resulting from the original incident” [3]—are of particular concern. Secondary crashes
pose elevated safety risks for responders and travelers and are a key metric in evaluating the
performance of Traffic Incident Management (TIM) programs. Accurately identifying secondary
crashes and understanding their relationship to primary incident characteristics, especially the
duration of the initial incident, is critical for improving incident response strategies and reducing
risk on the road.

Objective

The primary objective of this study is to investigate how the duration of a primary traffic incident
influences the likelihood of a secondary crash. In addition to incident duration, the study also
considers other potential contributing factors such as time of day, weather conditions, roadway
features, and prevailing traffic conditions. The project is structured around the following goals:

e Develop a comprehensive methodology for identifying secondary crashes from large-
scale incident datasets.

e Build models to quantify how incident duration and other features affect secondary crash
probability.

e Assess how the availability and completeness of primary incident data influence prediction
accuracy.

Project Scope and Contributions

This study undertook a first-of-its-kind, multi-state analysis of secondary crash dynamics using
incident data from Maryland (MD), Virginia (VA), Tennessee (TN), and Florida (FL). A key
contribution of this work was the development of a scalable and efficient data processing
framework for secondary crash identification, which can be applied to large historical datasets.
The project integrates diverse datasets, including:

Incident data from state-level traffic management systems
Radar-based road network data (TMC network)

Historical traffic volume profiles

Probe vehicle speed data

Weather records from reliable meteorological sources

In addition to data integration and processing, this study developed a comprehensive inference
modeling framework to extract and quantify the impact of primary incident characteristics,
environmental and temporal factors, and prevailing traffic conditions on the likelihood of
secondary crashes. These models enable a deeper understanding of the conditions under which
secondary crashes are more likely to occur and support more effective Traffic Incident
Management (TIM) strategies.
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The fusion and processing of these multiple data sources, combined with the robust modeling
framework, set the groundwork for scalable, data-driven secondary crash analysis across diverse
geographies and conditions.

Organization of the Report
The remainder of this report is organized as follows:

o Literature Review: This section summarizes previous work on secondary crash detection
and analysis. This includes a review of detection methodologies, descriptive statistics,
inferential models, and machine learning-based prediction approaches. It also discusses
key challenges in identifying and validating secondary crashes and reviews the spatial
and temporal scales considered in past studies.

e Data Evaluation: This section reviews incident data schemas from MD, VA, TN, and FL
as stored in the CATT

e Lab database: This section highlights the availability of critical fields such as incident start
and clearance times and documents schema-specific differences. It also outlines how
additional data sources (weather, volume, speed) were identified and reviewed.

e Secondary Crash Identification: This section describes the methodology used to detect
secondary crashes, including initial temporal and spatial filtering of incident data,
integration of segment-level attributes, and use of speed data for identifying traffic queues.

o Data Processing: This section details the steps to clean and prepare datasets, including
feature engineering for incident, volume, and weather data. A summary table of all
processed features is included at the end of this section.

¢ Model Development: This section presents the rationale for selecting logistic regression
for inference modeling. It outlines how model assumptions were checked, provides
descriptive insights, and presents model results for all four states.

¢ Recommendations for Data Collection: This section synthesizes findings related to data
availability and quality, highlighting gaps and inconsistencies that impacted model
performance. It also suggests ways to improve future data collection efforts across
agencies.

Literature Review

Studies on secondary crashes were extensively explored to understand the current research
landscape in this domain. Prior research on secondary crashes generally focused on two main
areas: (1) methods for secondary crash detection or identification, and (2)risk analysis of
secondary crash occurrence. These studies were organized as follows:

For secondary crash detection, methods were categorized as [6]:

o Static methods, which used predefined spatiotemporal thresholds to associate incidents.

e Dynamic methods, which considered evolving traffic conditions—such as speed drops or
queue formation—to detect secondary crashes.

o Database-tagged methods, which relied on incident reports or management system
records where secondary crashes were explicitly labeled.

Risk analysis studies were classified into three groups:

e Likelihood analyses, which employed parametric models (e.g., logistic regression) to
estimate the influence of various factors on the probability of secondary crashes.

e Predictive modeling studies, which used machine learning techniques to forecast the
likelihood of secondary crashes based on incident, environmental, and traffic features.
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Secondary Crash Identification
Static Identification

The static approach identified secondary crashes using predefined spatial and temporal
thresholds relative to each primary incident. For example, a crash occurring within two miles
upstream and two hours following a primary incident's start was typically considered a secondary
crash. This method was relatively easy to implement and more consistent than manual
identification procedures. However, it was generally less reliable than dynamic methods, as it did
not account for actual traffic conditions such as queue formation or speed reduction.

Several studies employed static criteria to identify secondary crashes [7], [8], [9], [10], [11], [12],
[13], [14], [15], [16], [17]. In addition to identifying crashes on the same directional approach, some
studies also considered secondary crashes that occurred in the opposite direction due to the
onlooker effect, using predefined spatial-temporal thresholds [10], [13], [14], [15].

Dynamic Identification

The dynamic approach identified secondary crashes based on the actual traffic queue formed
due to the primary incident, offering a more accurate and reliable estimation of the incident’s
impact area compared to static methods. Although this approach provided the most precise
identification of secondary crashes, it was resource-intensive and heavily dependent on traffic
data availability and quality.

Previous studies generally categorized dynamic methods into three groups: queuing model-
based, shockwave-based, and traffic data-driven approaches.

Queuing-Based Methods

Queuing-based approaches offered a realistic representation of the spatial and temporal extent
of incident impact areas by estimating the maximum queue length and dissipation time caused
by the primary crash. These methods typically relied on roadway characteristics such as capacity,
arrival rate, and service rate. A deterministic queuing model was often applied, where total system
delay was used to define the temporal boundary of potential secondary crashes. However,
different road segments were subject to varying queuing behaviors due to differences in traffic
flow, roadway geometry, incident severity, and environmental conditions [6].

Shockwave-Based Methods

Shockwave models assumed that the incident impact area formed a triangular region in the time-
space diagram. These models defined the spatiotemporal extent of the queue by estimating the
speed of the backward-forming and forward-dissipating shockwaves associated with the onset
and clearance of the primary incident. The backward shockwave represented the rate at which
the queue expanded upstream. In contrast, the forward shockwave began at the time of incident
clearance and continued until it intersected the backward shockwave, signaling queue dissipation.
Despite their conceptual clarity, shockwave-based methods were limited by simplified
assumptions about constant traffic arrival and discharge rates, which often failed to reflect real-
world variability [6], [15].

Both queuing and shockwave methods required assumptions that often oversimplified complex
traffic conditions. These included constant arrival and departure rates, fixed shockwave speeds,
and uniform roadway behavior, which could result in inaccurate estimations of incident impact
areas and secondary crash boundaries [18], [19].

Data-Driven Estimation of Incident Impact Area
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Data-driven methods aimed to estimate the spatiotemporal extent of incident impact areas by
leveraging real-world traffic data, enabling more dynamic and realistic identification of secondary
crashes. One prominent approach was developed by [20], in which an incident queue was defined
as the segment where speeds dropped by at least 30% relative to the historical average for that
segment and time of day. A time-space diagram was then constructed for all candidate incidents
occurring within 30 minutes of the primary incident’s start time and within 0.5 miles upstream.

In this method, a crash was considered secondary if a straight line could be drawn from the
primary to the secondary incident on the time-space diagram, passing only through segments
classified as non-recurring congestion.

However, this method had two notable shortcomings: If the connecting line between the primary
and secondary incidents passed through even a single segment without experiencing non-
recurring congestion, the incidents were classified as unrelated. The method only used the
primary incident’s start time to define the connecting line, which could be problematic for incidents
that caused congestion only later in their duration. Some studies have introduced modifications
to address these limitations. In one variation, only 90% of the time-space intervals between the
primary and secondary incidents were required to exhibit non-recurring congestion. Additionally,
the connection was allowed to originate from any point along the timeline of the primary incident,
not just its start [21].

Another data-driven technique that gained prominence in recent years involved the use of speed
contour plots to estimate the impact area of a primary incident. In this approach, traffic speed data
were collected for several hours before and after an incident, covering a spatial buffer both
upstream and downstream. The observed speed data were compared against average speeds
from incident-free days at the same time and location to differentiate incident-induced congestion
from routine traffic delays. By subtracting these baseline values, researchers created differential
contour plots that highlighted areas of non-recurring congestion. These were then used to identify
whether other crashes fell within the influence zone of the primary incident [22].

This method has become increasingly dominant in recent secondary crash studies. For instance,
Zhang et al. [23] extracted 5-minute speed data for the six hours before and after each labeled
secondary crash, using traffic data sources from approximately two miles upstream and
downstream of the crash location. The authors built a new contour plot by subtracting the average
speed profiles from crash-free days, allowing them to isolate the effects of non-recurring
congestion and more accurately identify the secondary nature of those crashes.

In a similar effort, Li et al. [24] collected speed data covering a spatial range of five miles upstream
and two miles downstream of the primary crash location, with a temporal window extending from
one hour before to three hours after the incident. This configuration enabled them to observe the
evolution and dissipation of congestion around the incident site in high resolution.

Liu et al. [25] employed a symmetric observation window, using speed data spanning two hours
before and two hours after each primary crash, and covering two miles upstream and
downstream. This balanced spatial-temporal window allowed for a focused examination of the
immediate impact area and improved the classification of nearby crashes as secondary.

Together, these studies demonstrated the effectiveness of contour plot methods in leveraging
high-resolution traffic data to identify the influence zones of primary incidents. By incorporating
baseline comparisons to filter out recurring congestion, this approach offered a data-driven and
adaptable framework for secondary crash detection.

Database Tag

Another approach to identifying secondary crashes is through explicit tagging in traffic incident
databases, where each crash is labeled at the time of reporting as being secondary to a prior
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incident. This method bypasses the need for spatiotemporal inference or dynamic modeling by
relying directly on incident records maintained by responding agencies or traffic management
centers. While this approach offers the advantage of operational clarity, its effectiveness is highly
dependent on consistent and comprehensive data entry practices.

A notable example is the FHWA case study on Kentucky’s TIM program. Through enhanced data
collection, this effort aimed to establish a baseline for key TIM performance measures, including
secondary crashes, roadway clearance time, and incident clearance time. The Kentucky
Transportation Cabinet, in collaboration with FHWA, Kentucky State Police, local agencies, and
the Kentucky Transportation Center, formed a TIM task force to promote structured data reporting.
By tagging secondary crashes directly in incident databases, the program sought to improve
transparency, operational analysis, and long-term planning. This approach highlighted the
potential of coordinated interagency efforts to support performance-driven TIM practices and
more accurately quantify the safety and economic impacts of secondary crashes. The study found
that errors in the classification of secondary crashes had decreased over time, with correctly
identified secondary crashes increasing from 8.3% in 2015 to 13.3% in 2017. Simultaneously, the
number of incorrectly coded secondary crashes declined, a trend attributed to improved training
of first response personnel. However, the study also identified specific agencies with persistently
high error rates and recommended targeted training programs to further enhance reporting
accuracy [26].

Another study [27] evaluated the reliability and consistency of database-tagged secondary
crashes across several U.S. states that explicitly recorded secondary crashes in their crash
reports. A key finding was that data quality varied considerably, with more than two-thirds of
crashes labeled as secondary lacking identifiable primary crash candidates within two hours and
two kilometers. This raised concerns about inconsistent application of the secondary crash
definition, potential geospatial inaccuracies, and underreporting of primary crashes. The study
suggested that some secondary crashes may be triggered by non-crash incidents—such as
disabled vehicles or debris—that are not always logged in crash databases. Additionally, verifying
secondary crashes through crash narratives, while more accurate, was found to be resource-
intensive. These limitations underscored the need for better training, clearer guidelines, and
possibly the integration of spatiotemporal analysis to validate secondary crash classifications in
state databases.

Despite these challenges, the study conducted a comprehensive descriptive analysis of the
verified secondary crashes. Most secondary crashes occurred on Interstate highways or other
major arterials in urban areas, during daylight hours, and under clear weather. The majority did
not involve injuries, and roughly two-thirds were rear-end collisions. Smaller proportions were
sideswipes or non-collision events. Spatially and temporally, about 84% of secondary crashes
occurred within half a kilometer of the primary crash, and nearly half occurred within 20 minutes—
though some timing patterns may reflect reporting biases due to time rounding. Contributing
circumstances were often left blank, but where noted, common factors included stopped vehicles,
failure to reduce speed, and following too closely. Aggregated across states, 41% of secondary
crashes were linked to driver behavior, 28% to road hazards, and 24% to roadway or traffic
conditions. Case studies from states like Florida reinforced these findings, with driver inattention
and distraction consistently identified as key contributors.

Secondary Crash Risk Analysis
Parametric Models

Several studies employed parametric models to estimate the probability or timing of secondary
crashes, offering interpretable relationships between explanatory variables and crash outcomes.
One study that explicitly quantified the impact of incident duration on the likelihood of a secondary
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crash analyzed a limited dataset of 741 incidents that occurred on the Norman Expressway in
Indiana. Using a logistic regression model, the authors reported an odds ratio of 1.028 for the
incident clearance time variable. This indicates that for each additional minute of clearance time,
the odds of a secondary crash occurring increased by 2.8%. It is worth noting that the study
described this as a 2.8% increase in “likelihood,” but this terminology is not technically accurate:
in logistic regression, the odds ratio represents the multiplicative change in the odds (i.e., the ratio
of the probability of a secondary crash to the probability of no secondary crash), not the direct
probability itself [1].

While the Indiana study focused specifically on the impact of incident duration, several other
studies have employed parametric models to investigate a broader set of factors influencing
secondary crash likelihood. One study developed a Bayesian random effect logit model using
real-time traffic data to estimate the likelihood of secondary crashes. The inclusion of dynamic
traffic features—such as lane-level speed and volume variations—significantly improved the
model's accuracy, underscoring the importance of real-time data in crash risk estimation [28].
Another study used a Bayesian complementary log-log model to estimate secondary crash
likelihood, with input features selected using Random Forest. Key variables included occupancy,
lane closures, and incident clearance duration, allowing for inferences about hazard rates
associated with varying traffic and incident conditions [29]. Structural Equation Modeling (SEM)
was applied in a different study to examine the underlying relationships between driver behavior,
vehicle condition, environmental factors, and secondary crash occurrence. In combination with a
multinomial logit model and crash modification factor estimation via negative binomial regression,
the study provided insight into the causal and contributory factors of rear-end secondary crashes
[22]. Zhang et al. [23] employed a binary logit model to predict the occurrence of secondary
crashes and a hierarchical ordered probit model to assess injury severity. These parametric
models revealed that daylight, young drivers, and weather conditions such as snow significantly
increased the likelihood of secondary crashes, while factors like alcohol use and vehicle type
were associated with injury severity. Additionally, survival analysis models—including the
Proportional Hazard (PH) and Accelerated Failure Time (AFT) models—were used to examine
the duration between primary and secondary crashes. The models quantified how variables such
as peak hour traffic, lane and shoulder closures, and traffic volume affected both the likelihood
and timing of secondary crashes [30].

Non-Parametric Models

Several studies employed non-parametric or machine learning-based approaches to model the
likelihood, timing, or location of secondary crashes, prioritizing predictive accuracy and handling
of high-dimensional data over direct interpretability. One study used Random Forest models to
predict the time and distance gaps between primary and secondary crashes, followed by SHAP
(Shapley Additive Explanations) to interpret the influence of variables. Results showed that traffic
volume, speed, lighting, and population density were stronger predictors than primary crash
features, with Random Forest outperforming KNN and multilayer perceptron regression [25].

Another study proposed a hybrid machine learning framework that combined two XGBoost
models—one for predicting whether a crash would lead to a secondary crash and another for
estimating the likelihood of a secondary crash occurring. By integrating both outputs, the hybrid
model achieved a high AUC (area under the curve) of 0.89 and maintained strong sensitivity with
minimal false alarms, demonstrating its value for real-time applications [24].

A state-wide study applied association rule mining (ARM) alongside Random Forest and the
Boruta algorithm to detect patterns and select relevant features related to secondary crash
severity. The analysis showed that most secondary crashes occurred within 30 minutes of a
primary crash and identified peak hour traffic and roadway type as important predictors [31]. Next,
Chen et al. proposed a generative and predictive hybrid model, VarFusiGAN-Transformer, to
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predict both the occurrence probability and spatiotemporal distribution of secondary crashes. The
model used multilayer perceptrons and long short-term memories (LSTMs) to synthesize static
and dynamic inputs, while the transformer architecture enabled powerful sequence modeling. This
model achieved outstanding classification and regression performance, surpassing traditional
generative adversarial network (GAN) variants in sensitivity and balance between false positives
and false negatives [32].

Literature Review Summary

The body of research on secondary crash identification and modeling has evolved significantly
over the past decade. Early work focused on static identification methods, relying on fixed time-
distance thresholds, while more recent studies emphasized dynamic identification through traffic
data such as speed contour plots. These data-driven approaches, particularly those using high-
resolution speed profiles and spatiotemporal filtering, have become the dominant method for
identifying secondary crashes due to their ability to reflect real-time traffic conditions.

Modeling efforts have also shifted over time. Earlier studies relied on parametric statistical
models (e.g., logit, probit, survival analysis), which were suitable for inference and interpretation.
In recent years, the focus has turned toward machine learning (ML) approaches, such as Random
Forest, XGBoost, and deep learning models like LSTM and GAN-based frameworks, which offer
superior predictive accuracy at the expense of interpretability. Explainability tools such as Shapley
Additive Explanations (SHAP) and Local Interpretable Model-Agnostic Explanations (LIME) have
helped bridge this gap.

Almost all modeling studies were conducted on limited, region-specific datasets, typically ranging
from 3,000 to 25,000 incidents, often from single corridors or metro areas. Only a few studies
adopted a multi-state perspective, mainly concerned with assessing data quality and
performing descriptive analyses, rather than inference and predictive modeling.

One key output of the literature review is the synthesis of variables used in statistical and ML
models to predict secondary crash likelihood or severity. These variables span multiple
dimensions. Table 1 provides a summary of common variables used in secondary crash likelihood
analysis.
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Table 1. Summary of common variables used in secondary crash likelihood analysis

Category Variables

Traffic Traffic volume, speed, lane-level speed differences

Characteristics

Incident Severity and type of primary crash, incident duration/incident clearance time
Characteristics

Roadway Number of lanes, road width, curvature, intersections, road surface conditions,
Geometry horizontal alignment, road geometry

Driver & Vehicle Vehicle type, vehicle condition, service year, defects

Characteristics

Environmental Weather, lighting condition (daylight, strong light), visibility, snow depth, wind speed,
Conditions temperature, humidity, surface condition (wet, slush, oiled)

Temporal Time of day, day of week, month, sunrise/sunset status

Features

Spatial Features Proximity to intersection, proximity to billboards/trees, speed limit, intersection
presence, traffic signal presence

Data Evaluation and Processing
Incident Data

CATT Lab receives a wide range of event data from different agencies, each using its own system
for incident reporting and data management. For this project, four states—Maryland (MD), Virginia
(VA), Tennessee (TN), and Florida (FL)—were selected for analysis. Each state maintains its own
incident data collection process and shares data with the CATT Lab at different levels of
completeness and granularity. As a result, data from each state were stored in separate schemas
within the CATT Lab databases and evaluated individually for the availability of key features
relevant to secondary crash analysis, such as incident start and end times, location accuracy,
lane closure details, and responder actions.

The incident data used in this project covered 2022-2024, providing a recent and sufficiently large
window for robust analysis across the four study states. To our knowledge, this is the largest
secondary crash likelihood analysis conducted to date.

Once the CATT Lab receives incident records, they are spatially aligned to Traffic Message
Channels (TMCs) based on their reported geolocation and direction of travel. This alignment is a
critical feature that greatly facilitates data fusion, as many other traffic datasets—such as speed,
volume, and probe-based measurements—are indexed at the TMC level. Snapping incidents to
the TMC network allows these datasets to be consistently merged and analyzed within a unified
spatial framework.

Among the different event types available in these schemas, this study focused on records
classified as incidents lasting less than 10 hours. These represent unplanned events likely to
cause traffic disruption and are most relevant to secondary crash detection.

It is important to note that the Maryland incident data used in this study is limited to records
reported by the Coordinated Highways Action Response Team (CHART), which primarily covers
incidents occurring on National Highway System (NHS) routes. While other states provided
incident data across all roadway types, the broader Maryland State Police data—although more
comprehensive in coverage—was excluded from analysis due to the absence of incident start
and end times received by the CATT Lab. Since temporal information is essential for secondary
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crash detection and timing analysis, only the CHART-sourced incidents were retained for
Maryland in this project.

One major finding from the incident data evaluation was that the accuracy of the geolocation fields
reported in the datasets was questionable. Across all four states, the number of unique
geolocations was significantly lower than the number of incident records, suggesting that many
incidents were repeatedly assigned to the same coordinates. These repeated locations often
corresponded to highway access ramps, plazas, or other familiar reference points, indicating
limitations in how incident locations are captured or reported. In some cases, dispatch procedures
or data entry tools may have defaulted to common locations rather than pinpointing the actual
incident site.

This lack of spatial precision presents challenges for analyses that rely on accurate location
data—for example, in identifying secondary crashes or fusing with weather and roadway datasets.
However, this limitation has less impact on features reported at the TMC level, since those are
aligned to standardized roadway segments rather than incident-specific coordinates.

Table 2 presents the total number of incident records received from each state for 2022—-2024,
the subset with valid start and end times used in the analysis, and the percentage of unique
geolocations relative to total incidents. This percentage indicates how frequently incident
locations were repeated within each dataset.

Table 2. Incident Counts, Temporal Validity, and Geolocation Uniqueness by State.

State Total Incident Incidents With Valid % Unique
Records Start/End Time Geolocations (out
of all incidents)
Maryland 218,143 214,008 32.88%
Virginia 411,086 397,964 17.89%
Tennessee 294,967 268,952 5.36%
Florida 1,943,489 1,849,575 2.92%

Incident Data Processing

Once the incident databases were explored and the availability of relevant features was assessed,
the next step was to extract and process data in a format suitable for statistical analysis. Four
main tables were used for this purpose: the event table, responder table, lane table, and vehicle
table. Each table required tailored processing to consolidate and engineer features at the incident
(event_id) level.

Event Table

The event table includes one row per incident, identified by a unique event _id, which serves as
the primary key. The first step was to filter the table to include only records classified as
incidents, excluding other event types such as work zones, weather-related events, and planned
closures. Once the relevant event ids were identified, key features were extracted directly from
the table. These features included the start and end times of the incident, geolocation, road
weather conditions, lighting, and general weather conditions, where available. Since

each event _id appears only once in this table, extracting these attributes was straightforward.

Responder Table
The responder table contains one row for each responding unit associated with an incident,

meaning multiple rows can exist for a single event ids. This table was processed to aggregate
responder-related attributes to the incident level. Specifically, the total number of responders per
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incident was calculated. In addition, binary indicators were created to flag the presence of specific
types of responders during the incident. These types included, but were not limited to:
transportation response units, fire units, state police units, light tow units, local police units,
freeway service patrols, emergency vehicle units, HAZMAT units, private contractor response
units, and others.

Lane Table

Similar to the responder table, the lane table contains multiple rows per incident, with each row
representing an update to the lane configuration during the event. The table includes information
about lane types, enabling the distinction between travel lanes and shoulder lanes. To extract
relevant features, the data was aggregated at the incident level.

The primary features derived from this table were the existence of shoulder lane closures and the
average capacity reduction for both travel and shoulder lanes. For each incident, the total closure
time was calculated separately for travel lanes and shoulder lanes. These closure times were
then normalized by the total duration of the incident and the total number of available lanes of
each type, resulting in consistent measures of proportional capacity reduction across incidents.

Vehicle Table

The vehicle table contains one row for each vehicle involved in an incident, meaning multiple rows
can be associated with a single event_ids. This table was processed to extract vehicle-related
features at the incident level. Specifically, the total number of vehicles involved in each incident
was calculated. Additional counts were generated for specific vehicle types such as passenger
cars, motorcycles, commercial vehicles, and buses, where available. It is important to note that
vehicle-level data were only available in the CATT Lab databases for Maryland and Florida.

Incident Data Summary

To summarize the findings of the incident data evaluation and processing across the four states,
Table 3 lists the key features expected from incident data and indicates the availability of each
feature in Maryland, Virginia, Tennessee, and Florida data sets that could be readily queried.

Table 3. Summary of Incident Data Availability by State

Feature Maryland Virginia Tennessee Florida
Start / End time of incident V4 V4

Location v v v v
Responder data v v v v

Lane information N4 v v v
Road weather conditions V4 V4
Lighting N4 N4
Weather condition V4 V4
Vehicles involved v v

Speed Data

The speed data used in this study consisted of probe-based traffic speed measurements at the
TMC level, accessed through the CATT Lab platform. These data are sourced from the Regional
Integrated Transportation Information System (RITIS), which provides access to raw probe speed
data via the Massive Data Downloader (MDD) interface available in the Probe Data Analytics
(PDA) suite.
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Due to the nature of speed data—which are streamed in real time for all roadway segments at
regular intervals—the MDD is optimized for querying large volumes of data across fixed time
windows and predefined segment lists. However, incidents are distributed irregularly in space and
time, making the default query structure inefficient for secondary crash analysis. This project
implemented custom queries written directly to the probe data API to overcome this challenge.
These queries were designed to extract 5-minute aggregated speed data specific to each incident
over its impacted TMC segments and during a configurable time window surrounding the incident
period.

This tailored querying approach allowed the project team to efficiently retrieve the precise
spatiotemporal slices of speed data needed to assess traffic conditions before, during, and after
each incident, supporting dynamic identification of secondary crashes.

The retrieved speed data were specifically processed for secondary crash identification. This
processing workflow is described in detail in this report's Secondary Crash Identification section.

Volume Data

Unlike speed data, real-time volume data are only available at specific locations within a
transportation network where fixed sensors have been installed to record vehicle counts. As a
result, most volume-based analysis in transportation relies on historical data sources and annual
averages such as the average annual daily traffic (AADT). To enable time-specific analysis, AADT
can be disaggregated using a method known as profiling [33], which estimates typical vehicle
counts in 15-minute intervals across a standard week for each segment.

This study used profiling volume data from the National Performance Management Research
Data Set (NPMRDS) as the primary source of traffic volume. This dataset, which is updated
annually, provides volume profiles for segments on the NHS. For incidents occurring on non-NHS
routes, INRIX 2019 profiling volumes were used when available to supplement the NPMRDS data.

This combined approach ensured that a consistent and comprehensive volume estimate was
available for all analyzed incidents, allowing traffic demand to be considered in conjunction with
speed and incident characteristics during secondary crash identification and modeling.

Once the appropriate volume data source was determined for each incident and data availability
was confirmed, 15-minute profiling volumes were extracted for the entire incident duration, from
start to end. These values were then aggregated to calculate an average volume for the incident
period. In addition to the average, volume values at the exact start and end times of the incident
were also retained separately, allowing for a more granular representation of traffic conditions at
incident boundaries.

Radar Weather Data

In addition to the weather-related fields available in the incident datasets for some states, this
project incorporated radar-based weather data as a consistent and comprehensive source across
all four study states. This external weather data was used to ensure uniform coverage of
precipitation conditions, regardless of variations in incident reporting practices.

The CATT Lab has developed an API to ingest and serve weather data from the National Oceanic
and Atmospheric Administration (NOAA). The data, originally provided in raster format (gridded
pixels), is processed and mapped to road segments using the TMC network. This mapping allows
seamless integration with other TMC-based datasets used in the study.

The API delivers data from NOAA’s Multi-Radar Multi-Sensor (MRMS) feed at 2-minute intervals,
including attributes such as precipitation type and precipitation rate. Only segments with
precipitation are returned. If no data is returned for a segment at a specific timestamp, it is
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assumed that no precipitation occurred. A value of -99 was returned in cases where data is
missing from the NOAA archive.

Because the weather data was already provided at the segment level, it was easily fused with
incident records and traffic data to support analysis of environmental factors associated with
secondary crashes.

Weather data were processed to generate incident-specific features that capture precipitation
conditions before and during each event. Two clusters of time windows were defined for querying
the API: one for the period before the incident and another for the duration of the incident itself.

The before-event cluster aggregated precipitation records at several lookback intervals: 2
minutes, 30 minutes, 1 hour, 3 hours, 6 hours, 12 hours, and 24 hours before the incident start
time. The during-event cluster covered the full time span between the incident’s start and end
timestamps.

For each time window, the following nine attributes were computed:

e Precipitation percentage: the percentage of the time window during which precipitation
was recorded

Maximum precipitation rate: the highest precipitation rate observed

Minimum precipitation rate: the lowest precipitation rate observed

Average precipitation rate: total precipitation divided by the duration of the time window
Snow flag: true if snow was recorded as a precipitation type

Hail flag: true if hail or mixed rain and hail was recorded

Rain flag: true if any other precipitation type (e.g., rain) was recorded

Data gap flag for rate: true if negative values (e.g., -99) were recorded for precipitation
rate

» Data gap flag for type: true if negative values were recorded for precipitation type

Segment Data

Segment-level roadway characteristics used in this study were primarily derived from the HERE
TMC map, which provides standardized segment definitions across the road network. The
HERE dataset includes essential attributes such as segment geometry, direction of travel, and
functional road class. OpenStreetMap (OSM) was used to supplement this base data to extract
the number of lanes associated with each segment. An internal process was developed to map
OSM road segments to TMC segments, allowing the number of lanes to be assigned to each
TMC with high spatial accuracy.

Additionally, speed limit data from the MAP-21 dataset was incorporated where available.
Although MAP-21 includes segment-level speed limits, its coverage is limited and not uniform
across all regions. As a result, it was used selectively to supplement other segment characteristics
when available.

Secondary Crash Identification

Considering the size and complexity of the incident dataset analyzed in this study, a hybrid
method for secondary crash identification was developed to support large-scale processing
across multiple states. Figure 1 presents an overview of the identification method.
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Figure 1. Secondary Crash Identification Method Overview.

Spatial and Temporal Filtering

As shown in Figure 1, the first step was to conduct a spatial search for each incidenti € I, where I
is the set of all incidents analyzed. A 5-mile radius (R = 5 — miles) was used to search for nearby
incidents. All incidents that fell within this radius were considered initial candidates. The set of
these candidate incidents was labeled as CSC;.

Next, a temporal filter was applied based on equation (1) to determine whether the start time of
each candidate incident fell within a relevant window relative to incident i. Specifically, a candidate
incident j € CSC, was retained if its start time sc; fell between the start time sc¢; and end time ec;
of incident i plus 0.5 times its duration were retained for further consideration. The set of incidents
that satisfied this condition was labeled CSC,.

st; < stj < et; + 0.5(st; —et;) Vj € CSC, (1)

In the third step, the network-level relationship between the primary incidenti and each
candidate j € CSC, was evaluated. For this purpose, the list of TMC segments impacted by i was
extracted in both the direction of travel and the opposite direction. The tracing algorithm
developed for this study was capable of capturing complex network structures, including branches
from ramps and parallel connectors, allowing for a realistic representation of how congestion may
spread from the incident location.
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From all candidate secondary crashes (j € CSC;), only those located on segments identified as
potentially impacted by the primary incident were retained for further filtering. This ensured that
spatial proximity considered the actual traffic flow, not just Euclidean distance. The set of these
incidents was labeled as CSC;. In this step, each primary incident could be associated with
multiple secondary crashes; however, each secondary crash was assigned to only one primary.
In cases where a secondary crash had more than one potential primary incident, the primary that
was spatially closest, based on the calculated graph distance, was selected.

Speed-Based Filtering

Following the spatial, temporal, and network-level filters applied in earlier steps, an additional
analysis stage was performed using speed data to evaluate the congestion impact of the primary
incident. This step aimed to confirm that the candidate secondary crashes occurred in the
presence of measurable disruption in traffic flow, as indicated by reduced travel speeds. The
process involved extracting and analyzing probe speed data along the route between the
candidate primary-secondary pairs.

Let P denote the set of all candidate primary-secondary crash pairs identified after spatial,
temporal, and network-level filtering. For each p € P crash pair that passed the earlier filters, the
following steps were performed:

Segment Identification and Speed Data Extraction

Let TMC, represent the ordered set of TMC segments that form the route between the primary
and secondary crash in pair p. For each segment tmc € TMC,, , two types of speed data were
extracted at 5-minute intervals from the start time of the primary crash to the start time of the
secondary crash:

o St..:the observed speed on segment tmc during interval t
H},.: the historical speed on the same segment during the same time interval

In parallel, the total distance between the candidate primary and secondary crash locations was
calculated as the sum of the lengths of the TMCs forming the route (tmc € TMC,), with

adjustments for the offset positions of the crash locations within their respective segments.

Speed Aggregation by Time Intervals
For each time interval t, speeds were aggregated using the harmonic mean weighted by segment
length:

o Observed speed averaged across the route was calculated based on equation (2):
Z mc L
Observed Speed? = % (2)
ZtmcETMCpSt—
tmc
e Historical speed averaged across the route was calculated based on equation (3):
ZthETMCp Ltme

Historical Speed} = Ny 7wy (3)

tmcETMCpHE
mc

Where:
o St the observed speed on segment tmc during interval t
o Hf,.: the historical speed on the same segment during the same time interval
e Linc: the length of segment tmc

Speed Reduction Metrics
For each interval t in pair p, the following metrics were computed:

Investigation of Factors Contributing to Secondary Crashes 21




e Speed change:
o Speed Changef = Observed Speedi7 — Historical Speedf (4)

e Speed change percentage:

Speed Changef

o Speed Change Percentagel = x 100 (5)

Historical Speedf

Temporally Aggregated Results

For each p € P cross all intervals between the primary and secondary crashes in pair p, the
following were calculated:

e Overall average speed change:

e Average Speed Change? = TipZtETp Speed Change,fJ (6)

e Overall average speed change percentage:

e Qverall Average Speed Change Percentage? = TipZtETp Speed Change Percentagef (7)

e Speed change and speed change percentage for the specific time interval during which
the secondary crash occurred, denoted as:
e Speed Changefs and Speed Change Percentage ?S

Where:

e TP is the number of 5-minute time intervals between the primary and secondary crash p
start times.
e tsis the time interval when the start time of the secondary crash.

Once the relevant speed metrics for the route between each candidate primary-secondary crash
pair were calculated, these values were used to further filter the set P. This filtering aimed to retain
only those pairs in which the secondary crash was more likely to have occurred due to the traffic
disruption caused by the primary crash. Specifically, candidate pairs that did not exhibit reductions
in speed were excluded from modeling and descriptive analysis.

The next part of this section presents summary statistics and distributions of the candidate
primary-secondary crash pairs across the four states analyzed in this study.

Identification Results

Table 4 summarizes the candidate primary-secondary crash pairs identified through the hybrid
filtering framework described earlier. For each state in the study, the table includes:

e The number of candidate primary crashes that were associated with at least one potential
secondary crash on their potentially impacted segments (CSC5)
e The number of candidate pairs that showed a speed drop along the route between the
primary and secondary crash
o Overall Average Speed ChangeP < 0 and Speed Changefs <0

To further analyze the impact of incident timing, the counts of candidate pairs with observed speed
drops are reported separately for two categories:

e Pairs where the secondary crash occurred during the clearance time of the primary crash

e Pairs where the secondary crash occurred after the primary crash had ended, but within
a window equal to 50 percent of the primary crash duration (referred to as the recovery
time in this study).
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Table 4. Summary of Candidate Primary-Secondary Crash Pairs and Speed Drop Conditions

State Candidate Pairs Pairs with Speed Drop Pairs with Speed Drop
Count (During Clearance Time) (During Recovery Time)
Maryland 28,572 8,093 (28.32%) 4,276 (14.97%)
Virginia 52,310 12,968 (24.79%) 6,889 (13.17%)
Tennessee 98,958 20,605 (20.82%) 8,882 (8.98%)
Florida 637,362 80,848 (12.68%) 23,053 (3.62%)

Figure 2 presents the distribution of speed changes to better illustrate how traffic conditions
changed for the candidate pairs that experienced a speed drop. It shows both the average speed
reduction over the duration between crashes and the speed reduction during the secondary crash.
These distributions are shown separately for pairs that occurred during the clearance time and
those that occurred during the recovery time.

According to Figure 2, the distribution of speed drop—both in terms of overall average and at the
specific time of the secondary crash—is consistent across all four states. In all cases, speed
reductions ranged from 0 to nearly 100 percent. One notable pattern is that the speed drop at the
time of the secondary crash is generally higher than the average speed drop over the full interval
between the primary and secondary events. For example, among candidate pairs occurring during
the clearance time of the primary crash, approximately 20 percent experienced an average speed
drop of more than 40 percent. In contrast, around 30 percent experienced a speed drop greater
than 40 percent, specifically at the time of the secondary crash.

Another important takeaway from this figure is that the choice of a speed drop threshold for
filtering candidate pairs directly impacts the number of pairs that remain classified as valid
primary-secondary crashes. The higher the threshold, the more confident we can be that the
secondary crash was indeed influenced by congestion caused by the primary incident. In
particular, for pairs in which the secondary crash occurred during the recovery time, it is
reasonable to expect that a more substantial traffic impact would be required for a causal
connection to exist. Therefore, applying a stricter speed drop threshold to these cases is justified
and may help improve the accuracy of secondary crash identification.

In this study, all candidate pairs in which the secondary crash occurred during the clearance time
of the primary crash were considered valid if there was any measurable speed drop along the
route, applying a threshold of 0 percent. For pairs where the secondary crash occurred after the
primary crash had ended—referred to as recovery time—a more conservative threshold of 10
percent speed reduction was applied to ensure a stronger indication of congestion impact.

For candidate pairs where the secondary crash occurred downstream of the primary crash, no
threshold on speed drop was applied. Instead, an alternative filter was used to exclude pairs in
which the secondary crash occurred more than 0.5 miles downstream of the primary location.
This filter accounts for the fact that downstream secondaries are typically caused by
rubbernecking or driver distraction, effects that are unlikely to persist beyond approximately one
minute of travel time—roughly equivalent to 0.5 miles at a speed of 30 miles per hour.

As noted previously, the reported geolocation of incidents is prone to error, with many crashes
recorded at identical or repeated coordinates. To account for this uncertainty and take a
conservative approach, the same speed drop thresholds applied to upstream secondary crashes
were also applied to those reported at the same location as the primary crash.
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Figure 2. Distribution of Speed Reductions for Candidate Primary-Secondary Crash Pairs by State
and Timing Window

Based on these criteria, Table 5 reports the percentage of unique primary incidents that led to at
least one qualifying secondary crash, as well as the percentage of total crashes identified as valid

secondaries, for each of the four states.
Table 5. Summary of Candidate Primary-Secondary Crash Pairs and Speed Drop Conditions

State Total Incidents Pct Primary Event Pct Secondary Event
Maryland 214,008 3.86% 3.93%

Virginia 397,964 2.81% 3.07%

Tennessee 268,952 6.5% 7.5%

Florida 1,849,575 4.14% 4.81%

To explore the spatial and temporal relationships within the final set of selected primary-
secondary crash pairs, Figure 3 presents the distributions of the time difference between the start
times of the primary and secondary crashes, and the distance between them, across all four
states. According to this figure, all four states exhibit similar patterns in the distribution of spatial
and temporal gaps between selected primary-secondary crash pairs, with Maryland showing
relatively smaller gaps on average. In terms of spatial proximity, the share of secondary crashes
occurring within 1 mile of the primary crash ranges from about 50 percent in Florida to around 70
percent in Maryland. For temporal proximity, approximately 40 percent of secondary crashes in
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Florida, Virginia, and Tennessee occurred within 30 minutes of the primary crash, compared to
nearly 70 percent in Maryland. These results suggest that in Maryland, selected secondary
crashes tend to occur more quickly and in closer proximity to the associated primary events.

To further explore the joint relationship between spatial and temporal proximity of secondary
crashes, Figure 4 presents a scatter plot of time difference versus distance between the primary
and secondary crash for the final set of selected primary-secondary crash pairs across all states.
Overall, there is a weak positive correlation, indicating that secondary crashes occurring later tend
to happen farther from the primary crash location. This trend is consistent with the notion that
secondary crashes are likely to occur within the congestion queue that builds and propagates
upstream over time. The positive correlation is slightly stronger in Maryland, which may be
attributed to the fact that the Maryland data is limited to the NHS—comprised of higher-volume
roadways—where the impact of a primary crash on queue formation and growth is generally more
pronounced.

Two important considerations should be noted. First, although the initial radius search for
candidate secondary crashes was limited to five miles based on Euclidean distance, the final
matched pairs may reflect graph-based distances greater than five miles due to network routing
and segment geometry. Second, while the distances reported in this study are accurately
calculated using graph distance and adjusted for segment offsets, they may still be affected by
inaccuracies in the reported geolocations of incidents. As discussed earlier, repeated or imprecise
location reporting may introduce spatial uncertainty that should be considered when interpreting
these values.

To further inform the interpretation of secondary crash timing, Figure 5 presents a plot of primary
incident duration versus the time difference between the start of the primary crash and the start
of the associated secondary crash for the final set of matched primary-secondary crash pairs.

This visualization helps investigate how far into the timeline of the primary crash the secondary
crash tends to occur. A 45-degree reference line is included to distinguish between secondary
crashes that occurred during the clearance time of the primary crash (points to the left of the line)
and those that occurred during the recovery window—defined as up to 50 percent of the primary
incident’s duration after its end time (points to the right of the line).

According to Figure 5, in all four states, secondary crashes can occur at any time during the
clearance period of the primary crash and even during the recovery period that follows. However,
the density of observations—represented by the shading in the heat map—is higher closer to the
start of the primary incident. This pattern is particularly evident for longer-duration incidents,
where the shading visibly fades as time progresses. This suggests that while secondary crashes
may occur throughout the clearance and recovery windows, they are more likely to occur closer
to the start of the primary incident than toward its end or beyond.
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Figure 5. Duration of primary vs. Time Difference between Primary-Secondary Pairs (with 45-
degree reference line)

Model Development

This study employed logistic regression, one of the most widely used statistical models in crash
prediction and, more specifically, in secondary crash analysis. As a parametric model, logistic
regression is particularly well-suited for the inference objectives of this study. The primary goal is
not only to predict the occurrence of secondary crashes but also to quantify the impact of key
factors—such as incident duration, incident characteristics, roadway geometry, and
environmental conditions—on the likelihood that a secondary crash occurs.

Logistic regression is used to model a binary outcome—in this case, whether a secondary crash
occurred (1) or did not occur (0). The model estimates the probability of the outcome as a function
of a set of independent variables. It does so by modeling the log-odds of the outcome as a linear
combination of the predictor variables:

P(Y=1)
(1—P(Y=1)) =Byt B X1+ By Xz + B3Xs + -+ B X (8)
Where:

e P(Y =1) is the probability of a secondary crash
I
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e X;,X, X3, ..., X} are the predictor variables (e.g., duration of the primary incident, number
of responders, weather condition, etc.)
e B, is the intercept and B4, 82, B3, ..., B are the model coefficients.

The estimated coefficients can be exponentiated to yield odds ratios, which represent the
multiplicative change in the odds of a secondary crash for a one-unit change in the corresponding
predictor variable. This interpretability makes logistic regression especially useful for
understanding the role of individual features in secondary crash occurrence, beyond their
predictive power alone.

Based on the data evaluation and processing steps described earlier, a comprehensive set of
independent variables was developed for use in the logistic regression model. Table 6 presents
all variables considered for inclusion in the logistic regression model. The table provides a short
description for each variable, the source dataset (incident data, volume data, radar weather data,
or segment data), and the percentage of records for which the variable was available in each of
the four states. This availability assessment was used to guide variable selection and to ensure
consistency in the modeling process across states.

Please note that the availability percentages are based on the filtered incident datasets used for
analysis, excluding records without valid geolocation or start/end time, as described in Table 2. If
a variable is reported as NA for a given state, it indicates that the variable was either not available
in the incident data provided to CATT Lab, had no variability (i.e., the same value for all
observations), or was reported in a format unsuitable for modeling (such as free-text fields or
categorical variables with too many unique values).

Logistic Regression Assumptions

An important step in developing a logistic regression model is verifying that the model
assumptions are reasonably satisfied. The key assumptions include: (1) independence of
observations, (2) a binary (or ordinal) dependent variable, (3) linearity of the independent
variables with the log-odds of the outcome, and (4) absence of strong multicollinearity among the
independent variables. In this study, the assumption of independence is considered to be met, as
traffic incidents are treated as independent events. The dependent variable—whether a given
incident results in a secondary crash—is binary by design, satisfying the second assumption. To
evaluate the remaining assumptions, standard diagnostic tests were performed to assess
multicollinearity and to examine the linearity of continuous variables with respect to the log-odds.
These checks are described in detail in the following subsection.
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Table 6. Independent Variables Considered for Modeling and Their Availability by State

Variable Source Description Percent Available (%)
MD VA TN FL
Clearance Incident Data  Duration between the start and 100.00 100.00 100.00 100.00
Time (Event) end time reported for each incident
Day Type Incident Data = Indicates whether the incident 100.00 100.00 100.00 100.00
(Event) occurred on a weekday or during
the weekend
Event Type Incident Data Type of incident, including values  100.00 99.84  100.00 100.00
(Event) such as: disabled vehicle, serious
accident, accident, incident, injury
accident, medical emergency,
vehicle on fire, multi-vehicle
accident, disabled semi-trailer,
abandoned vehicle, overturned
vehicle, accident involving a
pedestrian, jackknifed semi-trailer,
brush fire, or none
Severity Incident Data = Severity of the incident, NA NA 100.00 100.00
(Event) categorized as: 'minor’,
'intermediate’, or 'major.
Lighting Incident Data NA NA 99.99 | 83.40
(Event)
Number of Incident Data  Total number of responders, 90.30 43.34 90.78 87.58
Responders (Responders) categorized as: 1, 2-3, or more
Category than 3.
Emergency Incident Data @ Indicates whether an emergency NA 8495 90.79 NA
Vehicle (Responders)  vehicle was dispatched to the
scene or not.
Total Incident Data = Total vehicles involved, 2457 NA NA 17.45
Vehicles (Vehicle) categorized as: 1, 2-3, or more
than 3
Truck Incident Data  Whether an incident involved a 2457 NA NA 17.45
Involvement = (Vehicle) truck or not
Shoulder Incident Data Indicating whether a shoulder lane  37.14 99.98 99.93 64.22
Lane (Lane) was present at the incident
location and whether it was
closed.
Capacity Incident Data = Calculated as the average lane 3714 9998 99.93 64.22
Reduction (Lane) closure time divided by the total
lane time, and categorized as: 0%,
0-10%, 10—20%, 20—30%, 30—
50%, and >50%.
Traffic Flow  Volume and Average expected hourly vehicle 99.01 98.04 99.79 | 87.51
Segment count per lane at the incident
Data location during the clearance
period, categorized as: '0-500',
'500-1000', '1000-2000', and
'>2000'.
Road Segment Road curvature, categorized as: 99.89 9990 9991 99.93
Curvature Data 'Straight' or 'Curved'.
Functional Segment Functional road classification, a 99.89 99.90 99.91 99.93
Class Data system used to group roads based

on their intended service, with
I
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Variable Source Description Percent Available (%)
MD VA TN FL
class 1 being the highest and 5
being the lowest.
Weather Radar Indicates whether there was rain 100.00 100.00 100.00 100.00
Status Weather Data or snow during the incident
clearance period.

Multicollinearity

Logistic regression requires little or no multicollinearity among the independent variables. This
means that independent variables should not be highly correlated with each other. Detecting
multicollinearity is important because while multicollinearity does not reduce the model's
explanatory power, it does reduce the independent variables' statistical significance. The
assumption can be verified with the variance inflation factor (VIF), which determines the
correlation strength between the independent variables in a regression model. Cramér’'s V is
another measure for verifying this assumption for categorical variables.

Variance Inflation Factor (VIF)

VIF is a measure of the amount of multicollinearity in regression analysis. A large VIF on an
independent variable indicates a highly collinear relationship to the other variables that should be
considered or adjusted for in the structure of the model and selection of independent variables.
The formula for VIF is:

1
2
1-R}

VIF, = 9)

Where R? is the unadjusted coefficient of determination for regressing the independent variable i
on the other variables.

When Ri2 is equal to 0, and therefore, when VIF or tolerance is equal to 1, the independent variable
i is not correlated to the other variables, meaning that multicollinearity does not exist. In general:

e VIF equal to 1 = variables are not correlated.
e VIF between 1 and 5 = variables are moderately correlated.
e VIF greater than 5 = variables are highly correlated.

Cramér's V

Cramér’s V correlation is used to measure the association between two categorical variables, and
its value varies from 0 (stating no relationship between the variables) to 1 (stating complete
association between the variables). It reaches a value of 1 only when an attribute is completely
determined by the other attribute. Cramér’s V is a normalized measure of association between
two categorical variables derived from the Chi-square statistic, but unlike Chi-square, Cramér’'s V
gives a standardized measure of strength. The formula for Cramér's V is:

2

V= |—2 — (10)

min (k—1,r-1)

Where »? is derived from Pearson’s chi-square test, n is the total number of observations k and
r are the number of categories of the two categorical variables.

Perfect Separation
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Perfect separation in logistic regression occurs when one or more independent variables can
perfectly distinguish between the outcome classes. This means the dependent variable can be
completely predicted based on certain values of the independent variables. In such cases, the
maximum likelihood estimation used to fit the model fails, as the estimated coefficients tend
toward infinity to achieve perfect classification. This results in convergence issues, extremely
large or undefined standard errors, and unreliable model outputs. To resolve this issue, the
problematic variable was removed.

Once multicollinearity and separation checks were completed for all candidate variables, a final
set of independent variables was selected for modeling in each state. The variable selection
process ensured that the included predictors met logistic regression assumptions and retained
sufficient variability and interpretability. Table 7 presents the list of variables that qualified for use
in the logistic regression models for each state, based on data availability, statistical checks, and
relevance to the modeling objectives.

Table 7. Final Set of Independent Variables Used in Logistic Regression Modeling by State

Variable MD VA TN FL
Clearance Time v v v v
Day Type v v v v
Event Type v v v v
Severity X X v v
Lighting X X v v
Number of Responders Category @ x X X X
Emergency Vehicle X v v X
Total Vehicles X X X X
Truck Involvement X X X X
Shoulder Lane X X X X
Capacity Reduction v v v v
Traffic Flow v v v v
Road Curvature v v v v
Functional Class X X X X
Weather Status v v v v

Linearity of Continuous Variables with Log-Odds

A key assumption in logistic regression is that continuous independent variables exhibit a linear
relationship with the log-odds of the outcome. In this study, most independent variables were
modeled as categorical variables—either by nature (e.g., weather condition, day of week) or by
discretization for interpretability and consistency across states. Therefore, this assumption does
not apply to those variables.

The only continuous variable retained in its original form was clearance time, which is also a
central variable of interest in this study. One of the main research objectives is to assess the
marginal effect of unitincreases in clearance time on the likelihood of a secondary crash. As such,
verifying the linearity of clearance time with the log-odds of the response is necessary.
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To assess this, the Box-Tidwell testwas applied. This test evaluates whether the logit
transformation of the outcome variable is linearly related to the continuous predictor variable.
Specifically, the method augments the logistic regression model with an interaction term between
the continuous variable and its natural logarithm. For clearance time (x), the model includes an
additional term x X log (x) and the significance of this term is tested:

log (1%;;) =B, + Bx+ B,(xlog log (x)) + - (11)

If the interaction term is statistically significant, this suggests a deviation from linearity. The test
was conducted after fitting an initial logistic regression model using the final set of variables
selected for each state.

The results of the Box-Tidwell test indicated that clearance time does not exhibit a linear
relationship with the log-odds of a secondary crash. Given that clearance time is a key variable in
this study, and the objective is to retain it as a continuous predictor, several transformations were
explored to address this nonlinearity. Logarithmic and quadratic transformations of clearance time
were tested, but did not resolve the nonlinearity issue across all states.

As an alternative, a piecewise modeling approach was adopted. Clearance time was segmented
into intervals in which the variable demonstrated an approximately linear relationship with the log-
odds of the outcome. Note that the objective of this study was based on inference and utilized
historical data. Thus, the duration is known. The following clearance time bins (in minutes) were
identified as effective across all four states based on Box-Tidwell diagnostics:

(0-10), (10-30), (30-60), (60—120), (120-300), and (300-600) minutes.

Using this approach, separate logistic regression models were fitted for each clearance time bin
within each state. These models were used to estimate the odds ratio of clearance time within
intervals where the linearity assumption holds. Additionally, a baseline logistic regression model
was fitted for each state using the full set of observations and all independent
variables except clearance time. This allowed for estimation of the overall odds ratios associated
with other predictors while avoiding the influence of the clearance time’s nonlinearity on the model
structure.

Modeling Results

This subsection presents the key outputs from the logistic regression modeling phase. As
described earlier, separate models were developed for each clearance time bin due to the non-
linear relationship between clearance time and the log-odds of a secondary crash. Table 8
summarizes the odds ratios for clearance time within each defined bin, reported for each state.
Alongside the odds ratios, the table includes the number of observations in each bin and the
percentage of incidents that resulted in a secondary crash, called primary (i.e., where the
dependent variable Y = 1).

Across all models, a statistical significance threshold of p, ;.. < 0.05 was applied. In the results
tables, any variable whose coefficient did not meet this significance criterion is labeled
as SNS (Statistically Non-Significant). This labeling highlights variables whose impact on
secondary crash likelihood was not statistically distinguishable from zero at the 95% confidence
level.
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Table 8. Odds Ratios for Clearance Time by Duration Bins and State

Duration Bin (minutes) MD VA TN FL
0-10 # Observations 96,931 108,794 72,931 370,185
minutes % Primary 1.61 0.46 1.48 0.82
Odds Ratio 1.131 1.213 1.139 1.129
10-30 # Observations 56,129 112,017 58,908 408,159
% Primary 4.16 1.81 3.65 1.98
Odds Ratio 1.031 1.035 1.031 1.033
30-60 # Observations 33,020 88,018 41,552 334,363
% Primary 6.06 3.69 7.39 3.67
Odds Ratio 1.014 1.016 1.013 1.016
60-120 # Observations 17,782 65,074 40,757 322,009
% Primary 8.78 6.98 10.99 6.33
Odds Ratio 1.008 1.013 1.007 1.009
120-300  #Observations 7,363 20,644 37,956 292,663
% Primary 7.96 9.89 15.36 7.94
Odds Ratio 1.003 1.002 1.003 1.003
300-600  #Observations 2,439 2,807 16,458 120,106
% Primary 7.35 12.54 21.16 7.86
Odds Ratio SNS SNS 1.001 1.001

According to Table 8, the odds ratio reported for each clearance time bin and state reflects how
the odds of an incident leading to a secondary crash change proportionally with each additional
minute of clearance time. Across all four states, the odds ratios are consistently higher for
incidents with shorter durations, indicating that each minute increase in clearance time for these
incidents has a more substantial impact on the likelihood of a secondary crash—an intuitive and
expected pattern.

The odds ratios for incidents lasting 0-10 minutes are approximately 1.13 in Maryland,
Tennessee, and Florida, and as high as 1.21 in Virginia. This means that each additional minute
of clearance time increases the odds of a secondary crash by 13-21% for short-duration
incidents. For incidents in the 10-30 minute bin, the odds ratio drops to around 1.03, indicating a
3% increase in odds per minute. This effect diminishes further with longer durations: incidents
lasting 30—-60 minutes have odds ratios around 1.015 (1.5% increase), those lasting 60-120
minutes show odds ratios of 1.007—1.013, and incidents in the 120—-300 minute range have odds
ratios close to 1.003.

For very long incidents (over 300 minutes), the odds ratios are either statistically insignificant in
Maryland and Virginia or extremely close to 1 (e.g., 1.001 in Tennessee and Florida), suggesting
that clearance time has minimal influence on the likelihood of a secondary crash once the incident
duration exceeds five hours.
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In addition to the bin-specific models for clearance time, a separate logistic regression model was
developed for each state using the full dataset, excluding clearance time, to evaluate the effect of
all other explanatory variables. The goal of this model was to estimate the overall odds ratios for
categorical and other non-continuous variables included in the analysis. As in Table 8, a
significance threshold of 0.05 was applied, and odds ratios for variables that did not meet this
threshold are labeled statistically non-significant (SNS). Variables that were either unavailable in
the dataset or excluded due to multicollinearity are marked as NA.

For each categorical variable included in the model, a reference category is identified and listed
in the table. The odds ratios presented for the remaining categories are interpreted relative to this
reference category. That is, an odds ratio greater than 1 indicates a higher likelihood of a
secondary crash occurring relative to the reference category. In contrast, an odds ratio less than
1 indicates a lower likelihood.

The results of this analysis are presented in Table 9.

According to Table 9, several explanatory variables demonstrated consistent patterns across
states, while others showed state-specific variations in their association with the likelihood of a
secondary crash.

Severity, which was only available in Tennessee and Florida, did not yield a statistically significant
odds ratio in Florida. However, in Tennessee, both intermediate and major severity incidents were
associated with odds ratios around 1.5, suggesting that more severe incidents increase the odds
of a secondary crash by approximately 50% compared to minor severity crashes. This is
expected, as severe crashes often take longer to clear and cause more disruption and distraction.

Capacity reduction variables showed mixed results. In Maryland and Tennessee, the 20-30%
reduction category had the highest odds ratio (close to 2), implying that such reductions may
double the odds of a secondary crash compared to cases with no reduction. In contrast, Virginia
and Florida showed the highest odds ratios for the 0—-10% reduction range. This may reflect
differences in countermeasure deployment (e.g., dynamic message signs) or inaccuracies in lane
data entry during incident response.

For the weekday variable, Virginia showed no significant difference between weekday and
weekend crashes. Maryland had an odds ratio below 1, suggesting higher secondary crash odds
on weekends, while Tennessee and Florida had odds ratios above 1 (1.07-1.17), indicating a
slightly greater odds on weekdays.

The presence of emergency vehicles (available in VA and TN) also showed opposite trends: an
increased odds of secondary crashes in Virginia and a decreased odds in Tennessee. These
differences could reflect variation in response strategies, traffic control practices, or data
reporting.

The event subtype categories showed several notable patterns:

e "Abandoned vehicle" had an odds ratio below 1 in Florida (0.8), indicating a lower odds of
secondary crashes compared to the reference group.

o "Disabled vehicle" had an odds ratio below 1 across all states, suggesting lower secondary
crash risk.

e "Serious accident" in Maryland showed a high odds ratio (2.24), meaning it more than
doubled the odds of a secondary crash.

o "Multi-vehicle accident" showed elevated odds (e.g., 1.63 in VA, 1.37 in TN).

o "Medical emergency" and "overturned vehicle" also had higher odds ratios that were
significant.
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Table 9. Odds Ratios of Non-Continuous Explanatory Variables from Logistic Regression Models

for Each State (Excluding Clearance Time).

Variable MD
const 0.033
Severity, Reference Category: minor

intermediate NA
major NA
unknown NA

Capacity Reduction, Reference Category: 0%

0 to 10% 1.358
10 to 20% 1.252
20 to 30% 1.815
30 to 50% 1.593
More than 50% SNS
unknown 0.678
Day Type, Reference Category: Weekend

weekday 0.853
Emergency Vehicle Involvement, Reference Category: No
yes NA
Incident Type, Reference Category: Accident
abandoned vehicle NA
accident involving a pedestrian NA
brush fire NA
disabled semi-trailer NA
disabled vehicle 0.786
incident SNS
injury accident 1.241
jackknifed semi trailer NA
medical emergency 0.686
multi-vehicle accident NA
overturned vehicle NA
serious accident 2.242
vehicle on fire SNS

Hourly Flow, Reference Category: 0 to 500 veh/hr/In

500 to 1,000 veh/hr/In 1.429

1,000 to 2,000 veh/hr/In 2.279
.
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VA
0.015

NA
NA
NA

1.927
2.022
2.076
1.662
0.593
SNS

SNS

1.163

NA
NA
NA
0.807
0.505
SNS
NA
NA
NA
1.629
NA
NA
SNS

1.995
4.195

TN
0.029

1.562
1.553
NA

1.907
1.211
SNS

0.906
1.592
0.450

1.067

0.916

1.841
0.399
NA
NA
0.846
NA
NA
SNS
NA
1.371
1.553
NA
1.210

1.643
3.198

FL
0.033

SNS
SNS
SNS

1.936
1.430
1.535
1.418
1.395
0.860

1.169

NA

0.807
NA
SNS
NA
0.467
0.385
NA
NA
NA
NA
NA
NA
SNS

1.585
3.557




Variable MD VA TN FL
More than 2,000 veh/hr/In 2.458 5.988 3.151 5.276
unknown 0.655 0.612 0.070 0.544
Lighting, Reference Category: Daylight

Dark (No Street Light) NA NA SNS NA
Dark (Street Light) NA NA SNS NA
Dawn NA NA SNS NA
Dusk NA NA SNS NA
unknown NA NA SNS NA
Road Curvature, Reference Category: Straight

curved SNS SNS 0.942 0.961
Weather, Reference Category: Clear

rain 1.934 2.510 2.409 2.364
snow 5.552 4.237 3.710 2.020

Hourly flow, which categorizes expected traffic volume at the incident time, showed strong and
consistent effects across states, using the 0-500 veh/hr/In group as the reference. Higher flow
categories had substantially higher odds ratios—up to ~6 in Virginia and ~5.3 in Florida for
the >2,000 veh/hr/In category. This indicates that secondary crashes are far more likely in high-
volume traffic environments, likely due to reduced maneuverability and faster congestion buildup
following a primary crash. The “unknown” volume category consistently showed odds ratios below
1, possibly reflecting incomplete data or unmeasured low-volume roads.

Lighting and road curvature were mostly not statistically significant, with odds ratios near 1 or
labeled SNS (statistically not significant). However, weather conditions were among the most
influential variables: compared to clear weather, rain was associated with odds ratios of ~2.0 to
2.5 across all states. Snow showed the strongest effect, with odds ratios ranging from ~2.0 in FL
to over 5.5 in MD—the highest of any variable in the model.

These results underscore two critical findings:

e Adverse weather, especially snow and rain, is the most potent predictor of secondary
crashes among the evaluated variables.

e High expected hourly traffic flow dramatically increases odds of a secondary crash,
making it an essential contextual factor for real-time incident management and risk
forecasting.

It is important to note that the exact values of the odds ratios should be interpreted with caution.
Several factors can influence the reliability of these estimates:

e Data quality and completeness vary across states and variables. Some features may be
underreported, inconsistently defined, or entirely unavailable in certain datasets, which
can affect model accuracy.

e Unmeasured factors—such as driver behavior, enforcement presence, or real-time traffic
control—were not accounted for but may influence the likelihood of secondary crashes.

Investigation of Factors Contributing to Secondary Crashes




e Inaccuracy in incident geolocation is a significant limitation. Since road curvature was
derived directly from the reported location of incidents, any spatial inaccuracy can
introduce bias, particularly for geometry-related features.

These caveats highlight the need to view the odds ratios as indicative of general trends rather
than precise causal estimates and reinforce the importance of improving data quality, especially
for geospatial attributes, in future modeling efforts.

Recommendations for Data Collection

A key challenge in this multi-state analysis was handling the inconsistencies between agency
databases. For example, the fusion of multiple data sources including traffic speeds, weather,
volumes, and roadway geometry—was necessary. The accuracy of time and geolocation
attributes can have an impact on the ability to correctly associate an incident with the correct road
segments or nearby events, thus affecting the fidelity of both descriptive statistics and modeling
outputs.

Similarly, temporal data quality—such as start and end times of incidents, responder arrival and
clearance times, or lane closure timestamps—is critical. These time features form the basis of
actionable insights into response strategies and are integral for constructing incident timelines.
Although this study could not validate these timestamps independently, their accuracy remains
essential for drawing reliable statistics and informing incident management practices.

Another important aspect of data collection is the usability of the recorded attributes. One common
issue is the treatment of missing values. If a data element is unpopulated due to its perceived
irrelevance (for example, no lane closures occurred), this should be explicitly coded (for example,
“all lanes open”) rather than left blank. This distinction enables data users to differentiate between
genuinely missing values and cases where the feature does not apply, thereby reducing ambiguity
in data interpretation.

Additionally, variables with excessive numbers of unique values (especially free-text fields or
loosely defined categories) are often unsuitable for direct modeling and require substantial
preprocessing. It is highly beneficial for such features to be standardized at the point of collection,
using controlled vocabularies or predefined category lists to improve downstream usability.

To improve both efficiency and accuracy, transportation agencies should consider integrating
auxiliary data sources directly into the traffic management systems. For instance, data elements
such as number of lanes, road curvature, functional classification, or real-time weather conditions
can be auto-populated using existing databases (such as datasets already maintained by state
DOTS, HERE maps, OpenStreetMap, or NOAA radar feeds). This reduces the burden on field
personnel, improves consistency, and allows for real-time validation of reported information.

Conclusion and Future Work

The primary objective of this study was to evaluate the relationship between incident duration and
the probability of a secondary crash. However, this research made the following additional
tangential contributions:

e Conducted an in-depth review of recent studies in secondary crashes, highlighting
methods to identify secondary crashes and methods to model secondary crashes

e Established procedures to fuse disparate data sources into a master database for safety
analysis.

e Developed a methodology to identify secondary crashes using real-world speed data.

e Created and evaluated several secondary crash prediction models using rigorous
statistical methods to test the assumptions of each model. These models were used to
make inferences on the impact of key variables such as incident duration, weather,
capacity reduction, and flow rates on the probability of secondary crashes.
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e Documented challenges related to best practices in traffic management system crash data
collection

e Made recommendations on the critical variables to collect to support secondary crash
inference modeling

This project has laid the groundwork for the following proposed future work activities:

e Operationalizing a real-time secondary crash prediction capability: This effort will leverage
the data processing and fusion techniques developed in this project to build a system for
predicting the probability of a secondary crash in real-time at the onset of an incident.
Predictions would be updated in real-time as new information is entered into agency traffic
management systems such as the arrival of an emergency responder, changing weather
conditions, or the reopening of a lane. These prediction algorithms could provide traffic
incident management decision makers with valuable insights on an incident’s impact soon
after detection and throughout the incident management process. This information will
enable proactive operational decisions which could improve safety and reduce delays, fuel
consumption, emissions, and property destruction.

e Operationalizing a real-time incident duration prediction model: Recognizing that incident
duration is a critical factor in predicting secondary crashes, a model that could estimate
incident duration at the onset of an incident may enhance the accuracy of a real-time crash
prediction model. Predictions would be updated in real-time as new information is entered
into agency traffic management systems

e Operationalizing a real-time _queue prediction model: Speeds and associated queues
resulting from an incident define the spatial boundaries for searching for secondary crashes.
In the proposed real-time application, the max queue length would be predicted at the onset
of the incident and updated as new information about the incident is provided by the traffic
management system, nearby traffic sensors, weather, and probe-based speed data.
Understanding the expected max queue length can inform operational decisions, such as the
use of dynamic message signs (DMS) to inform road users of the back of the queue, sudden
slowdowns, and the need for possible detour routes or change in operational strategies.
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