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Executive Summary 
A secondary crash is a collision that happens as a result of another initial or primary crash—often 
within the scene of the primary incident or in the resulting queue.  These secondary crashes are 
essentially a chain reaction of crashes where one ultimately triggers another.  There is an oft-
quoted statistic that goes “the likelihood of a secondary crash increases by 2.8 percent for every 
minute that a primary incident remains a hazard.” [1] Variations of this statistic have been 
presented in FHWA reports on the benefits of traffic incident management, the International 
Association of Chiefs of Police, numerous presentations, and related traffic safety studies ([2] and 
[3]) The transportation industry has adopted this statistic as fact despite the origin being based 
on an limited dataset covering a single roadway in Indiana from over 25 years ago.  Updating this 
statistical talking point with broader datasets is essential to maintaining the credibility of our 
industry and our push for safety reforms.  
The purpose of this research was to defensibly analyze and document the impact of incident 
duration on the probability of a secondary crash occurrence. To accomplish this goal, we 
conducted rigorous statistical analysis and probability modeling during a three-year, multi-state 
analysis of secondary crashes.  This study evaluated nearly 3-million crashes during 2022, 2023, 
and 2024 in the states of Florida, Maryland, Tennessee, and Virginia. Our research determined 
that the percentage of crashes that could be classified as secondary varied between each state 
as shown in table below: 

State 
Percent of crashes that 

are considered 
secondary crashes. 

Florida 4.8% 

Maryland 3.9% 

Tennessee 7.5% 

Virginia 3.1% 

 
One of the key contributions of this study is showing that the impact of each additional minute of 
incident duration on the likelihood of a secondary crash is not constant but varies depending on 
the total duration of the incident. This challenges the prior practice of reporting a single value to 
represent the effect of duration. It is important to note that with a variable like incident duration, 
we can interpret the effect on odds—defined as the probability of a secondary crash occurring 
divided by the probability of it not occurring—but the actual probability depends on a combination 
of other factors beyond duration alone. The figure below provides a view illustrating the impact of 
each additional minute added to the primary incident duration on the odds of a secondary crash. 
This study found that the impact of each minute of duration varies by the total duration of the 
primary incident. In general, the impact on odds ratio is highest for short duration incidents (0-10 
minutes), and gradually decreases with increased primary crash incident duration.  
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Our key findings concluded the following: 

1. Overall, for every minute a lane is blocked, the odds of a secondary crash can range from 
less than 1% to 21%, depending on various incident factors. 

2. For incidents lasting 0–10 minutes, approximately 0.5% to 1.6% of incidents led to a 
secondary crash depending on the state. In this bin, each additional minute of duration 
increased the odds of a secondary crash by 13% in Maryland, Virginia, and 
Tennessee, but up to 21% in Florida.  

3. For incidents lasting 10-30 minutes, around 2% of cases in Florida and Virginia and around 
4% in Maryland and Tennessee resulted in a secondary crash. In this bin, The odds of a 
secondary crash occurring increased approximately 3% for each minute added to 
the incident duration for all states.  

4. For incidents lasting 30-60 minutes, around 4% of cases in Florida and Virginia, and 6-7% 
in Maryland and Tennessee resulted in a secondary crash. Within this bin, the odds of a 
secondary crash increased by about 1.5% for each additional minute of incident 
duration. 

5. While the proportion of incidents that led to a secondary crash ranged from approximately 
4% to 7% for 60–120 minute bins, to about 8% to 15% for the 120–300 minute bin, and 
up to over 21% for the 300–600 minute bin (varying by state), the increase in odds for 
each additional minute of duration within these bins remained low— generally less 
than 1%. 

6. We confirmed existing literature that states secondary crashes tend to occur closer to the 
start time of the primary crash.  

Our research also concluded that characteristics of each crash played an important role in 
increasing (or decreasing) the odds of a secondary crash occurring.  For example: 

• Severity: Crash severity was statistically non-significant in predicting the odds of a 
secondary crash in Florida; however, in Tennessee, increases in injury severity increased 
the odds of a secondary crash by 50%, relative to a minor crash.  

• Capacity Reduction: In Maryland and Virginia, a 20-30 percent reduction in capacity 
doubled the odds of a secondary crash, relative to no capacity reduction. 

• Day of Week: For the impact of day of week (weekday or weekend), the results were also 
mixed.  

o The day of the week in which the crash occurred had little impact on secondary 
incident odds in Virginia. 

o In Maryland, the odds of secondary crashes were higher during the weekend.  
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o In Tennessee and Florida, the odds of a secondary crash was 7-17 percent 
higher on weekdays.  

• Volumes: Higher traffic flows increased the odds of a secondary crash across all states.  
• Weather: Inclement weather was found to increase secondary crash likelihood.  

o Rain increased the odds by 200-250 percent relative to clear weather. 
o Snow showed a large impact with increased odds of secondary crash of 550 

percent in Maryland. 
While the primary objective of this research was to investigate the impact of incident duration on 
the probability of a secondary crash, the team made the following additional contributions: 

• Conducted an in-depth review of recent studies in secondary crashes, highlighting 
methods to identify secondary crashes and methods to model secondary crashes 

• Established procedures to fuse disparate data sources into a master database for safety 
analysis. 

• Developed a methodology to identify secondary crashes using real-world speed data. 
• Created and evaluated several secondary crash probability estimation models using 

rigorous statistical methods to test the assumptions of each model. These models were 
used to make inferences on the impact of key variables such as incident duration, weather, 
capacity reduction, and flow rates on the probability of secondary crashes.  

• Documented challenges related to best practices in traffic management system crash data 
collection 

• Made recommendations on the critical variables to collect to support secondary crash 
inference modeling 

The research team believes that the next logical step for this research is to take the methodologies 
developed for historic secondary crash data analysis and modify them to function in real-time as 
a secondary crash prediction tool that could be integrated into existing traffic incident 
management decision support platforms. These prediction algorithms could engage at the onset 
of an incident and provide traffic incident management decision makers with valuable insights on 
an incident’s impact soon after detection and throughout the incident management process. This 
information will enable proactive operational decisions which could improve safety and reduce 
delays, fuel consumption, emissions, and property destruction.   
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Introduction 
Background 
Traffic incidents are a major contributor to roadway congestion and safety concerns across the 
United States. A 2022 study conducted by the Center for Advanced Transportation Technology 
Laboratory found that in 2019, 18% of US traffic delay involved incidents as a contributing factor 
[4]. The resulting dashboard of this study can be found at [5] . Among incidents, secondary 
crashes—defined by the Federal Highway Administration (FHWA) as “unplanned incidents 
(starting at the time of detection) for which a response or intervention is taken, where a collision 
occurs either a) within the incident scene or b) within the queue (which could include the opposite 
direction) resulting from the original incident” [3]—are of particular concern. Secondary crashes 
pose elevated safety risks for responders and travelers and are a key metric in evaluating the 
performance of Traffic Incident Management (TIM) programs. Accurately identifying secondary 
crashes and understanding their relationship to primary incident characteristics, especially the 
duration of the initial incident, is critical for improving incident response strategies and reducing 
risk on the road. 

Objective 
The primary objective of this study is to investigate how the duration of a primary traffic incident 
influences the likelihood of a secondary crash. In addition to incident duration, the study also 
considers other potential contributing factors such as time of day, weather conditions, roadway 
features, and prevailing traffic conditions. The project is structured around the following goals: 

• Develop a comprehensive methodology for identifying secondary crashes from large-
scale incident datasets. 

• Build models to quantify how incident duration and other features affect secondary crash 
probability. 

• Assess how the availability and completeness of primary incident data influence prediction 
accuracy. 

Project Scope and Contributions 
This study undertook a first-of-its-kind, multi-state analysis of secondary crash dynamics using 
incident data from Maryland (MD), Virginia (VA), Tennessee (TN), and Florida (FL). A key 
contribution of this work was the development of a scalable and efficient data processing 
framework for secondary crash identification, which can be applied to large historical datasets. 
The project integrates diverse datasets, including: 

• Incident data from state-level traffic management systems 
• Radar-based road network data (TMC network) 
• Historical traffic volume profiles 
• Probe vehicle speed data 
• Weather records from reliable meteorological sources 

In addition to data integration and processing, this study developed a comprehensive inference 
modeling framework to extract and quantify the impact of primary incident characteristics, 
environmental and temporal factors, and prevailing traffic conditions on the likelihood of 
secondary crashes. These models enable a deeper understanding of the conditions under which 
secondary crashes are more likely to occur and support more effective Traffic Incident 
Management (TIM) strategies. 
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The fusion and processing of these multiple data sources, combined with the robust modeling 
framework, set the groundwork for scalable, data-driven secondary crash analysis across diverse 
geographies and conditions. 

Organization of the Report 
The remainder of this report is organized as follows: 

• Literature Review: This section summarizes previous work on secondary crash detection 
and analysis. This includes a review of detection methodologies, descriptive statistics, 
inferential models, and machine learning-based prediction approaches. It also discusses 
key challenges in identifying and validating secondary crashes and reviews the spatial 
and temporal scales considered in past studies. 

• Data Evaluation: This section reviews incident data schemas from MD, VA, TN, and FL 
as stored in the CATT  

• Lab database: This section highlights the availability of critical fields such as incident start 
and clearance times and documents schema-specific differences. It also outlines how 
additional data sources (weather, volume, speed) were identified and reviewed. 

• Secondary Crash Identification: This section describes the methodology used to detect 
secondary crashes, including initial temporal and spatial filtering of incident data, 
integration of segment-level attributes, and use of speed data for identifying traffic queues. 

• Data Processing: This section details the steps to clean and prepare datasets, including 
feature engineering for incident, volume, and weather data. A summary table of all 
processed features is included at the end of this section. 

• Model Development: This section presents the rationale for selecting logistic regression 
for inference modeling. It outlines how model assumptions were checked, provides 
descriptive insights, and presents model results for all four states. 

• Recommendations for Data Collection: This section synthesizes findings related to data 
availability and quality, highlighting gaps and inconsistencies that impacted model 
performance. It also suggests ways to improve future data collection efforts across 
agencies. 

Literature Review 
Studies on secondary crashes were extensively explored to understand the current research 
landscape in this domain. Prior research on secondary crashes generally focused on two main 
areas: (1) methods for secondary crash detection or identification, and (2) risk analysis of 
secondary crash occurrence. These studies were organized as follows: 

For secondary crash detection, methods were categorized as [6]: 

• Static methods, which used predefined spatiotemporal thresholds to associate incidents. 
• Dynamic methods, which considered evolving traffic conditions—such as speed drops or 

queue formation—to detect secondary crashes. 
• Database-tagged methods, which relied on incident reports or management system 

records where secondary crashes were explicitly labeled. 
Risk analysis studies were classified into three groups: 

• Likelihood analyses, which employed parametric models (e.g., logistic regression) to 
estimate the influence of various factors on the probability of secondary crashes. 

• Predictive modeling studies, which used machine learning techniques to forecast the 
likelihood of secondary crashes based on incident, environmental, and traffic features. 
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Secondary Crash Identification 
Static Identification 
The static approach identified secondary crashes using predefined spatial and temporal 
thresholds relative to each primary incident. For example, a crash occurring within two miles 
upstream and two hours following a primary incident's start was typically considered a secondary 
crash. This method was relatively easy to implement and more consistent than manual 
identification procedures. However, it was generally less reliable than dynamic methods, as it did 
not account for actual traffic conditions such as queue formation or speed reduction. 
Several studies employed static criteria to identify secondary crashes [7], [8], [9], [10], [11], [12], 
[13], [14], [15], [16], [17]. In addition to identifying crashes on the same directional approach, some 
studies also considered secondary crashes that occurred in the opposite direction due to the 
onlooker effect, using predefined spatial-temporal thresholds [10], [13], [14], [15]. 

Dynamic Identification 
The dynamic approach identified secondary crashes based on the actual traffic queue formed 
due to the primary incident, offering a more accurate and reliable estimation of the incident’s 
impact area compared to static methods. Although this approach provided the most precise 
identification of secondary crashes, it was resource-intensive and heavily dependent on traffic 
data availability and quality. 
Previous studies generally categorized dynamic methods into three groups: queuing model-
based, shockwave-based, and traffic data-driven approaches. 

Queuing-Based Methods 
Queuing-based approaches offered a realistic representation of the spatial and temporal extent 
of incident impact areas by estimating the maximum queue length and dissipation time caused 
by the primary crash. These methods typically relied on roadway characteristics such as capacity, 
arrival rate, and service rate. A deterministic queuing model was often applied, where total system 
delay was used to define the temporal boundary of potential secondary crashes. However, 
different road segments were subject to varying queuing behaviors due to differences in traffic 
flow, roadway geometry, incident severity, and environmental conditions [6]. 
 

Shockwave-Based Methods 
Shockwave models assumed that the incident impact area formed a triangular region in the time-
space diagram. These models defined the spatiotemporal extent of the queue by estimating the 
speed of the backward-forming and forward-dissipating shockwaves associated with the onset 
and clearance of the primary incident. The backward shockwave represented the rate at which 
the queue expanded upstream. In contrast, the forward shockwave began at the time of incident 
clearance and continued until it intersected the backward shockwave, signaling queue dissipation. 
Despite their conceptual clarity, shockwave-based methods were limited by simplified 
assumptions about constant traffic arrival and discharge rates, which often failed to reflect real-
world variability [6], [15]. 
Both queuing and shockwave methods required assumptions that often oversimplified complex 
traffic conditions. These included constant arrival and departure rates, fixed shockwave speeds, 
and uniform roadway behavior, which could result in inaccurate estimations of incident impact 
areas and secondary crash boundaries [18], [19]. 

Data-Driven Estimation of Incident Impact Area 
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Data-driven methods aimed to estimate the spatiotemporal extent of incident impact areas by 
leveraging real-world traffic data, enabling more dynamic and realistic identification of secondary 
crashes. One prominent approach was developed by [20], in which an incident queue was defined 
as the segment where speeds dropped by at least 30% relative to the historical average for that 
segment and time of day. A time-space diagram was then constructed for all candidate incidents 
occurring within 30 minutes of the primary incident’s start time and within 0.5 miles upstream. 
In this method, a crash was considered secondary if a straight line could be drawn from the 
primary to the secondary incident on the time-space diagram, passing only through segments 
classified as non-recurring congestion.  
However, this method had two notable shortcomings: If the connecting line between the primary 
and secondary incidents passed through even a single segment without experiencing non-
recurring congestion, the incidents were classified as unrelated. The method only used the 
primary incident’s start time to define the connecting line, which could be problematic for incidents 
that caused congestion only later in their duration. Some studies have introduced modifications 
to address these limitations. In one variation, only 90% of the time-space intervals between the 
primary and secondary incidents were required to exhibit non-recurring congestion. Additionally, 
the connection was allowed to originate from any point along the timeline of the primary incident, 
not just its start [21]. 
Another data-driven technique that gained prominence in recent years involved the use of speed 
contour plots to estimate the impact area of a primary incident. In this approach, traffic speed data 
were collected for several hours before and after an incident, covering a spatial buffer both 
upstream and downstream. The observed speed data were compared against average speeds 
from incident-free days at the same time and location to differentiate incident-induced congestion 
from routine traffic delays. By subtracting these baseline values, researchers created differential 
contour plots that highlighted areas of non-recurring congestion. These were then used to identify 
whether other crashes fell within the influence zone of the primary incident [22]. 
This method has become increasingly dominant in recent secondary crash studies. For instance, 
Zhang et al. [23] extracted 5-minute speed data for the six hours before and after each labeled 
secondary crash, using traffic data sources from approximately two miles upstream and 
downstream of the crash location. The authors built a new contour plot by subtracting the average 
speed profiles from crash-free days, allowing them to isolate the effects of non-recurring 
congestion and more accurately identify the secondary nature of those crashes. 
In a similar effort, Li et al. [24] collected speed data covering a spatial range of five miles upstream 
and two miles downstream of the primary crash location, with a temporal window extending from 
one hour before to three hours after the incident. This configuration enabled them to observe the 
evolution and dissipation of congestion around the incident site in high resolution. 
Liu et al. [25] employed a symmetric observation window, using speed data spanning two hours 
before and two hours after each primary crash, and covering two miles upstream and 
downstream. This balanced spatial-temporal window allowed for a focused examination of the 
immediate impact area and improved the classification of nearby crashes as secondary. 
Together, these studies demonstrated the effectiveness of contour plot methods in leveraging 
high-resolution traffic data to identify the influence zones of primary incidents. By incorporating 
baseline comparisons to filter out recurring congestion, this approach offered a data-driven and 
adaptable framework for secondary crash detection. 

Database Tag 
Another approach to identifying secondary crashes is through explicit tagging in traffic incident 
databases, where each crash is labeled at the time of reporting as being secondary to a prior 
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incident. This method bypasses the need for spatiotemporal inference or dynamic modeling by 
relying directly on incident records maintained by responding agencies or traffic management 
centers. While this approach offers the advantage of operational clarity, its effectiveness is highly 
dependent on consistent and comprehensive data entry practices. 
A notable example is the FHWA case study on Kentucky’s TIM program. Through enhanced data 
collection, this effort aimed to establish a baseline for key TIM performance measures, including 
secondary crashes, roadway clearance time, and incident clearance time. The Kentucky 
Transportation Cabinet, in collaboration with FHWA, Kentucky State Police, local agencies, and 
the Kentucky Transportation Center, formed a TIM task force to promote structured data reporting. 
By tagging secondary crashes directly in incident databases, the program sought to improve 
transparency, operational analysis, and long-term planning. This approach highlighted the 
potential of coordinated interagency efforts to support performance-driven TIM practices and 
more accurately quantify the safety and economic impacts of secondary crashes. The study found 
that errors in the classification of secondary crashes had decreased over time, with correctly 
identified secondary crashes increasing from 8.3% in 2015 to 13.3% in 2017. Simultaneously, the 
number of incorrectly coded secondary crashes declined, a trend attributed to improved training 
of first response personnel. However, the study also identified specific agencies with persistently 
high error rates and recommended targeted training programs to further enhance reporting 
accuracy [26]. 
Another study [27] evaluated the reliability and consistency of database-tagged secondary 
crashes across several U.S. states that explicitly recorded secondary crashes in their crash 
reports. A key finding was that data quality varied considerably, with more than two-thirds of 
crashes labeled as secondary lacking identifiable primary crash candidates within two hours and 
two kilometers. This raised concerns about inconsistent application of the secondary crash 
definition, potential geospatial inaccuracies, and underreporting of primary crashes. The study 
suggested that some secondary crashes may be triggered by non-crash incidents—such as 
disabled vehicles or debris—that are not always logged in crash databases. Additionally, verifying 
secondary crashes through crash narratives, while more accurate, was found to be resource-
intensive. These limitations underscored the need for better training, clearer guidelines, and 
possibly the integration of spatiotemporal analysis to validate secondary crash classifications in 
state databases. 
Despite these challenges, the study conducted a comprehensive descriptive analysis of the 
verified secondary crashes. Most secondary crashes occurred on Interstate highways or other 
major arterials in urban areas, during daylight hours, and under clear weather. The majority did 
not involve injuries, and roughly two-thirds were rear-end collisions. Smaller proportions were 
sideswipes or non-collision events. Spatially and temporally, about 84% of secondary crashes 
occurred within half a kilometer of the primary crash, and nearly half occurred within 20 minutes—
though some timing patterns may reflect reporting biases due to time rounding. Contributing 
circumstances were often left blank, but where noted, common factors included stopped vehicles, 
failure to reduce speed, and following too closely. Aggregated across states, 41% of secondary 
crashes were linked to driver behavior, 28% to road hazards, and 24% to roadway or traffic 
conditions. Case studies from states like Florida reinforced these findings, with driver inattention 
and distraction consistently identified as key contributors. 

Secondary Crash Risk Analysis 
Parametric Models  
Several studies employed parametric models to estimate the probability or timing of secondary 
crashes, offering interpretable relationships between explanatory variables and crash outcomes. 
One study that explicitly quantified the impact of incident duration on the likelihood of a secondary 
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crash analyzed a limited dataset of 741 incidents that occurred on the Norman Expressway in 
Indiana. Using a logistic regression model, the authors reported an odds ratio of 1.028 for the 
incident clearance time variable. This indicates that for each additional minute of clearance time, 
the odds of a secondary crash occurring increased by 2.8%. It is worth noting that the study 
described this as a 2.8% increase in “likelihood,” but this terminology is not technically accurate: 
in logistic regression, the odds ratio represents the multiplicative change in the odds (i.e., the ratio 
of the probability of a secondary crash to the probability of no secondary crash), not the direct 
probability itself [1].  
While the Indiana study focused specifically on the impact of incident duration, several other 
studies have employed parametric models to investigate a broader set of factors influencing 
secondary crash likelihood. One study developed a Bayesian random effect logit model using 
real-time traffic data to estimate the likelihood of secondary crashes. The inclusion of dynamic 
traffic features—such as lane-level speed and volume variations—significantly improved the 
model's accuracy, underscoring the importance of real-time data in crash risk estimation [28]. 
Another study used a Bayesian complementary log-log model to estimate secondary crash 
likelihood, with input features selected using Random Forest. Key variables included occupancy, 
lane closures, and incident clearance duration, allowing for inferences about hazard rates 
associated with varying traffic and incident conditions [29]. Structural Equation Modeling (SEM) 
was applied in a different study to examine the underlying relationships between driver behavior, 
vehicle condition, environmental factors, and secondary crash occurrence. In combination with a 
multinomial logit model and crash modification factor estimation via negative binomial regression, 
the study provided insight into the causal and contributory factors of rear-end secondary crashes 
[22]. Zhang et al. [23] employed a binary logit model to predict the occurrence of secondary 
crashes and a hierarchical ordered probit model to assess injury severity. These parametric 
models revealed that daylight, young drivers, and weather conditions such as snow significantly 
increased the likelihood of secondary crashes, while factors like alcohol use and vehicle type 
were associated with injury severity. Additionally, survival analysis models—including the 
Proportional Hazard (PH) and Accelerated Failure Time (AFT) models—were used to examine 
the duration between primary and secondary crashes. The models quantified how variables such 
as peak hour traffic, lane and shoulder closures, and traffic volume affected both the likelihood 
and timing of secondary crashes [30]. 

Non-Parametric Models 
Several studies employed non-parametric or machine learning-based approaches to model the 
likelihood, timing, or location of secondary crashes, prioritizing predictive accuracy and handling 
of high-dimensional data over direct interpretability. One study used Random Forest models to 
predict the time and distance gaps between primary and secondary crashes, followed by SHAP 
(Shapley Additive Explanations) to interpret the influence of variables. Results showed that traffic 
volume, speed, lighting, and population density were stronger predictors than primary crash 
features, with Random Forest outperforming KNN and multilayer perceptron regression [25]. 
Another study proposed a hybrid machine learning framework that combined two XGBoost 
models—one for predicting whether a crash would lead to a secondary crash and another for 
estimating the likelihood of a secondary crash occurring. By integrating both outputs, the hybrid 
model achieved a high AUC (area under the curve) of 0.89 and maintained strong sensitivity with 
minimal false alarms, demonstrating its value for real-time applications [24]. 
A state-wide study applied association rule mining (ARM) alongside Random Forest and the 
Boruta algorithm to detect patterns and select relevant features related to secondary crash 
severity. The analysis showed that most secondary crashes occurred within 30 minutes of a 
primary crash and identified peak hour traffic and roadway type as important predictors [31]. Next, 
Chen et al. proposed a generative and predictive hybrid model, VarFusiGAN-Transformer, to 
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predict both the occurrence probability and spatiotemporal distribution of secondary crashes. The 
model used multilayer perceptrons and long short-term memories (LSTMs) to synthesize static 
and dynamic inputs, while the transformer architecture enabled powerful sequence modeling. This 
model achieved outstanding classification and regression performance, surpassing traditional 
generative adversarial network (GAN) variants in sensitivity and balance between false positives 
and false negatives [32]. 

Literature Review Summary  
The body of research on secondary crash identification and modeling has evolved significantly 
over the past decade. Early work focused on static identification methods, relying on fixed time-
distance thresholds, while more recent studies emphasized dynamic identification through traffic 
data such as speed contour plots. These data-driven approaches, particularly those using high-
resolution speed profiles and spatiotemporal filtering, have become the dominant method for 
identifying secondary crashes due to their ability to reflect real-time traffic conditions. 
Modeling efforts have also shifted over time. Earlier studies relied on parametric statistical 
models (e.g., logit, probit, survival analysis), which were suitable for inference and interpretation. 
In recent years, the focus has turned toward machine learning (ML) approaches, such as Random 
Forest, XGBoost, and deep learning models like LSTM and GAN-based frameworks, which offer 
superior predictive accuracy at the expense of interpretability. Explainability tools such as Shapley 
Additive Explanations (SHAP) and Local Interpretable Model-Agnostic Explanations (LIME) have 
helped bridge this gap. 
Almost all modeling studies were conducted on limited, region-specific datasets, typically ranging 
from 3,000 to 25,000 incidents, often from single corridors or metro areas. Only a few studies 
adopted a multi-state perspective, mainly concerned with assessing data quality and 
performing descriptive analyses, rather than inference and predictive modeling. 
One key output of the literature review is the synthesis of variables used in statistical and ML 
models to predict secondary crash likelihood or severity. These variables span multiple 
dimensions. Table 1 provides a summary of common variables used in secondary crash likelihood 
analysis. 
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Table 1. Summary of common variables used in secondary crash likelihood analysis 
Category Variables 

Traffic 
Characteristics 

Traffic volume, speed, lane-level speed differences 

Incident 
Characteristics 

Severity and type of primary crash, incident duration/incident clearance time 

Roadway 
Geometry 

Number of lanes, road width, curvature, intersections, road surface conditions, 
horizontal alignment, road geometry 

Driver & Vehicle 
Characteristics 

Vehicle type, vehicle condition, service year, defects 

Environmental 
Conditions 

Weather, lighting condition (daylight, strong light), visibility, snow depth, wind speed, 
temperature, humidity, surface condition (wet, slush, oiled) 

Temporal 
Features 

Time of day, day of week, month, sunrise/sunset status 

Spatial Features Proximity to intersection, proximity to billboards/trees, speed limit, intersection 
presence, traffic signal presence 

 
Data Evaluation and Processing 
Incident Data 
CATT Lab receives a wide range of event data from different agencies, each using its own system 
for incident reporting and data management. For this project, four states—Maryland (MD), Virginia 
(VA), Tennessee (TN), and Florida (FL)—were selected for analysis. Each state maintains its own 
incident data collection process and shares data with the CATT Lab at different levels of 
completeness and granularity. As a result, data from each state were stored in separate schemas 
within the CATT Lab databases and evaluated individually for the availability of key features 
relevant to secondary crash analysis, such as incident start and end times, location accuracy, 
lane closure details, and responder actions.  
The incident data used in this project covered 2022-2024, providing a recent and sufficiently large 
window for robust analysis across the four study states. To our knowledge, this is the largest 
secondary crash likelihood analysis conducted to date. 
Once the CATT Lab receives incident records, they are spatially aligned to Traffic Message 
Channels (TMCs) based on their reported geolocation and direction of travel. This alignment is a 
critical feature that greatly facilitates data fusion, as many other traffic datasets—such as speed, 
volume, and probe-based measurements—are indexed at the TMC level. Snapping incidents to 
the TMC network allows these datasets to be consistently merged and analyzed within a unified 
spatial framework. 
Among the different event types available in these schemas, this study focused on records 
classified as incidents lasting less than 10 hours. These represent unplanned events likely to 
cause traffic disruption and are most relevant to secondary crash detection. 
It is important to note that the Maryland incident data used in this study is limited to records 
reported by the Coordinated Highways Action Response Team (CHART), which primarily covers 
incidents occurring on National Highway System (NHS) routes. While other states provided 
incident data across all roadway types, the broader Maryland State Police data—although more 
comprehensive in coverage—was excluded from analysis due to the absence of incident start 
and end times received by the CATT Lab. Since temporal information is essential for secondary 
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crash detection and timing analysis, only the CHART-sourced incidents were retained for 
Maryland in this project. 
One major finding from the incident data evaluation was that the accuracy of the geolocation fields 
reported in the datasets was questionable. Across all four states, the number of unique 
geolocations was significantly lower than the number of incident records, suggesting that many 
incidents were repeatedly assigned to the same coordinates. These repeated locations often 
corresponded to highway access ramps, plazas, or other familiar reference points, indicating 
limitations in how incident locations are captured or reported. In some cases, dispatch procedures 
or data entry tools may have defaulted to common locations rather than pinpointing the actual 
incident site. 
This lack of spatial precision presents challenges for analyses that rely on accurate location 
data—for example, in identifying secondary crashes or fusing with weather and roadway datasets. 
However, this limitation has less impact on features reported at the TMC level, since those are 
aligned to standardized roadway segments rather than incident-specific coordinates. 
Table 2 presents the total number of incident records received from each state for 2022–2024, 
the subset with valid start and end times used in the analysis, and the percentage of unique 
geolocations relative to total incidents. This percentage indicates how frequently incident 
locations were repeated within each dataset. 
Table 2. Incident Counts, Temporal Validity, and Geolocation Uniqueness by State. 

State Total Incident 
Records 

Incidents With Valid 
Start/End Time  

% Unique 
Geolocations (out 
of all incidents) 

Maryland  218,143 214,008 32.88% 

Virginia  411,086 397,964 17.89% 

Tennessee  294,967 268,952 5.36% 

Florida 1,943,489 1,849,575 2.92% 

 
Incident Data Processing  
Once the incident databases were explored and the availability of relevant features was assessed, 
the next step was to extract and process data in a format suitable for statistical analysis. Four 
main tables were used for this purpose: the event table, responder table, lane table, and vehicle 
table. Each table required tailored processing to consolidate and engineer features at the incident 
(event_id) level. 

Event Table 
The event table includes one row per incident, identified by a unique event_id, which serves as 
the primary key. The first step was to filter the table to include only records classified as 
incidents, excluding other event types such as work zones, weather-related events, and planned 
closures. Once the relevant event_ids were identified, key features were extracted directly from 
the table. These features included the start and end times of the incident, geolocation, road 
weather conditions, lighting, and general weather conditions, where available. Since 
each event_id appears only once in this table, extracting these attributes was straightforward. 
 
Responder Table 
The responder table contains one row for each responding unit associated with an incident, 
meaning multiple rows can exist for a single event_ids.  This table was processed to aggregate 
responder-related attributes to the incident level. Specifically, the total number of responders per 
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incident was calculated. In addition, binary indicators were created to flag the presence of specific 
types of responders during the incident. These types included, but were not limited to: 
transportation response units, fire units, state police units, light tow units, local police units, 
freeway service patrols, emergency vehicle units, HAZMAT units, private contractor response 
units, and others. 

Lane Table 
Similar to the responder table, the lane table contains multiple rows per incident, with each row 
representing an update to the lane configuration during the event. The table includes information 
about lane types, enabling the distinction between travel lanes and shoulder lanes. To extract 
relevant features, the data was aggregated at the incident level. 
The primary features derived from this table were the existence of shoulder lane closures and the 
average capacity reduction for both travel and shoulder lanes. For each incident, the total closure 
time was calculated separately for travel lanes and shoulder lanes. These closure times were 
then normalized by the total duration of the incident and the total number of available lanes of 
each type, resulting in consistent measures of proportional capacity reduction across incidents. 

Vehicle Table  
The vehicle table contains one row for each vehicle involved in an incident, meaning multiple rows 
can be associated with a single event_ids. This table was processed to extract vehicle-related 
features at the incident level. Specifically, the total number of vehicles involved in each incident 
was calculated. Additional counts were generated for specific vehicle types such as passenger 
cars, motorcycles, commercial vehicles, and buses, where available. It is important to note that 
vehicle-level data were only available in the CATT Lab databases for Maryland and Florida. 

Incident Data Summary 
To summarize the findings of the incident data evaluation and processing across the four states, 
Table 3 lists the key features expected from incident data and indicates the availability of each 
feature in Maryland, Virginia, Tennessee, and Florida data sets that could be readily queried. 
Table 3. Summary of Incident Data Availability by State 

Feature Maryland  Virginia  Tennessee  Florida  

Start / End time of incident ✓ ✓ ✓ ✓ 

Location ✓ ✓ ✓ ✓ 

Responder data ✓ ✓ ✓ ✓ 

Lane information ✓ ✓ ✓ ✓ 

Road weather conditions   ✓ ✓ 

Lighting   ✓ ✓ 

Weather condition   ✓ ✓ 

Vehicles involved ✓   ✓ 

 
Speed Data  
The speed data used in this study consisted of probe-based traffic speed measurements at the 
TMC level, accessed through the CATT Lab platform. These data are sourced from the Regional 
Integrated Transportation Information System (RITIS), which provides access to raw probe speed 
data via the Massive Data Downloader (MDD) interface available in the Probe Data Analytics 
(PDA) suite. 
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Due to the nature of speed data—which are streamed in real time for all roadway segments at 
regular intervals—the MDD is optimized for querying large volumes of data across fixed time 
windows and predefined segment lists. However, incidents are distributed irregularly in space and 
time, making the default query structure inefficient for secondary crash analysis. This project 
implemented custom queries written directly to the probe data API to overcome this challenge. 
These queries were designed to extract 5-minute aggregated speed data specific to each incident 
over its impacted TMC segments and during a configurable time window surrounding the incident 
period. 
This tailored querying approach allowed the project team to efficiently retrieve the precise 
spatiotemporal slices of speed data needed to assess traffic conditions before, during, and after 
each incident, supporting dynamic identification of secondary crashes. 
The retrieved speed data were specifically processed for secondary crash identification. This 
processing workflow is described in detail in this report's Secondary Crash Identification section. 

Volume Data 
Unlike speed data, real-time volume data are only available at specific locations within a 
transportation network where fixed sensors have been installed to record vehicle counts. As a 
result, most volume-based analysis in transportation relies on historical data sources and annual 
averages such as the average annual daily traffic (AADT). To enable time-specific analysis, AADT 
can be disaggregated using a method known as profiling [33], which estimates typical vehicle 
counts in 15-minute intervals across a standard week for each segment. 
This study used profiling volume data from the National Performance Management Research 
Data Set (NPMRDS) as the primary source of traffic volume. This dataset, which is updated 
annually, provides volume profiles for segments on the NHS. For incidents occurring on non-NHS 
routes, INRIX 2019 profiling volumes were used when available to supplement the NPMRDS data. 
This combined approach ensured that a consistent and comprehensive volume estimate was 
available for all analyzed incidents, allowing traffic demand to be considered in conjunction with 
speed and incident characteristics during secondary crash identification and modeling. 
Once the appropriate volume data source was determined for each incident and data availability 
was confirmed, 15-minute profiling volumes were extracted for the entire incident duration, from 
start to end. These values were then aggregated to calculate an average volume for the incident 
period. In addition to the average, volume values at the exact start and end times of the incident 
were also retained separately, allowing for a more granular representation of traffic conditions at 
incident boundaries. 

Radar Weather Data 
In addition to the weather-related fields available in the incident datasets for some states, this 
project incorporated radar-based weather data as a consistent and comprehensive source across 
all four study states. This external weather data was used to ensure uniform coverage of 
precipitation conditions, regardless of variations in incident reporting practices. 
The CATT Lab has developed an API to ingest and serve weather data from the National Oceanic 
and Atmospheric Administration (NOAA). The data, originally provided in raster format (gridded 
pixels), is processed and mapped to road segments using the TMC network. This mapping allows 
seamless integration with other TMC-based datasets used in the study. 
The API delivers data from NOAA’s Multi-Radar Multi-Sensor (MRMS) feed at 2-minute intervals, 
including attributes such as precipitation type and precipitation rate. Only segments with 
precipitation are returned. If no data is returned for a segment at a specific timestamp, it is 
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assumed that no precipitation occurred. A value of -99 was returned in cases where data is 
missing from the NOAA archive. 
Because the weather data was already provided at the segment level, it was easily fused with 
incident records and traffic data to support analysis of environmental factors associated with 
secondary crashes. 
Weather data were processed to generate incident-specific features that capture precipitation 
conditions before and during each event. Two clusters of time windows were defined for querying 
the API: one for the period before the incident and another for the duration of the incident itself. 
The before-event cluster aggregated precipitation records at several lookback intervals: 2 
minutes, 30 minutes, 1 hour, 3 hours, 6 hours, 12 hours, and 24 hours before the incident start 
time. The during-event cluster covered the full time span between the incident’s start and end 
timestamps. 
For each time window, the following nine attributes were computed: 

• Precipitation percentage: the percentage of the time window during which precipitation 
was recorded 

• Maximum precipitation rate: the highest precipitation rate observed 
• Minimum precipitation rate: the lowest precipitation rate observed 
• Average precipitation rate: total precipitation divided by the duration of the time window 
• Snow flag: true if snow was recorded as a precipitation type 
• Hail flag: true if hail or mixed rain and hail was recorded 
• Rain flag: true if any other precipitation type (e.g., rain) was recorded 
• Data gap flag for rate: true if negative values (e.g., -99) were recorded for precipitation 

rate 
• Data gap flag for type: true if negative values were recorded for precipitation type 

 

Segment Data 
Segment-level roadway characteristics used in this study were primarily derived from the HERE 
TMC map, which provides standardized segment definitions across the road network. The 
HERE dataset includes essential attributes such as segment geometry, direction of travel, and 
functional road class. OpenStreetMap (OSM) was used to supplement this base data to extract 
the number of lanes associated with each segment. An internal process was developed to map 
OSM road segments to TMC segments, allowing the number of lanes to be assigned to each 
TMC with high spatial accuracy. 
Additionally, speed limit data from the MAP-21 dataset was incorporated where available. 
Although MAP-21 includes segment-level speed limits, its coverage is limited and not uniform 
across all regions. As a result, it was used selectively to supplement other segment characteristics 
when available. 

Secondary Crash Identification  
Considering the size and complexity of the incident dataset analyzed in this study, a hybrid 
method for secondary crash identification was developed to support large-scale processing 
across multiple states. Figure 1 presents an overview of the identification method.  
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Figure 1. Secondary Crash Identification Method Overview. 
 
Spatial and Temporal Filtering 
As shown in Figure 1, the first step was to conduct a spatial search for each incident 𝑖𝑖 ∈ 𝐼𝐼, where 𝐼𝐼 
is the set of all incidents analyzed. A 5-mile radius (𝑅𝑅 = 5−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) was used to search for nearby 
incidents. All incidents that fell within this radius were considered initial candidates. The set of 
these candidate incidents was labeled as 𝐶𝐶𝐶𝐶𝐶𝐶1. 

Next, a temporal filter was applied based on equation (1) to determine whether the start time of 
each candidate incident fell within a relevant window relative to incident 𝑖𝑖. Specifically, a candidate 
incident 𝑗𝑗 ∈ 𝐶𝐶𝐶𝐶𝐶𝐶2 was retained if its start time 𝑠𝑠𝑠𝑠𝑗𝑗 fell between the start time 𝑠𝑠𝑠𝑠𝑖𝑖 and end time 𝑒𝑒𝑒𝑒𝑖𝑖 
of incident 𝑖𝑖 plus 0.5 times its duration were retained for further consideration. The set of incidents 
that satisfied this condition was labeled 𝐶𝐶𝐶𝐶𝐶𝐶2. 

𝑠𝑠𝑠𝑠𝑖𝑖 ≤ 𝑠𝑠𝑠𝑠𝑗𝑗 ≤ 𝑒𝑒𝑒𝑒𝑖𝑖 + 0.5(𝑠𝑠𝑠𝑠𝑖𝑖 − 𝑒𝑒𝑒𝑒𝑖𝑖)  ∀ 𝑗𝑗 ∈ 𝐶𝐶𝐶𝐶𝐶𝐶2     (1) 

In the third step, the network-level relationship between the primary incident 𝑖𝑖 and each 
candidate 𝑗𝑗 ∈ 𝐶𝐶𝐶𝐶𝐶𝐶2 was evaluated. For this purpose, the list of TMC segments impacted by 𝑖𝑖 was 
extracted in both the direction of travel and the opposite direction. The tracing algorithm 
developed for this study was capable of capturing complex network structures, including branches 
from ramps and parallel connectors, allowing for a realistic representation of how congestion may 
spread from the incident location. 
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From all candidate secondary crashes (𝑗𝑗 ∈ 𝐶𝐶𝐶𝐶𝐶𝐶2), only those located on segments identified as 
potentially impacted by the primary incident were retained for further filtering. This ensured that 
spatial proximity considered the actual traffic flow, not just Euclidean distance. The set of these 
incidents was labeled as 𝐶𝐶𝐶𝐶𝐶𝐶3. In this step, each primary incident could be associated with 
multiple secondary crashes; however, each secondary crash was assigned to only one primary. 
In cases where a secondary crash had more than one potential primary incident, the primary that 
was spatially closest, based on the calculated graph distance, was selected. 

Speed-Based Filtering  
Following the spatial, temporal, and network-level filters applied in earlier steps, an additional 
analysis stage was performed using speed data to evaluate the congestion impact of the primary 
incident. This step aimed to confirm that the candidate secondary crashes occurred in the 
presence of measurable disruption in traffic flow, as indicated by reduced travel speeds. The 
process involved extracting and analyzing probe speed data along the route between the 
candidate primary-secondary pairs. 
Let 𝑃𝑃 denote the set of all candidate primary-secondary crash pairs identified after spatial, 
temporal, and network-level filtering. For each 𝑝𝑝 ∈ 𝑃𝑃 crash pair that passed the earlier filters, the 
following steps were performed: 

Segment Identification and Speed Data Extraction 
Let 𝑇𝑇𝑇𝑇𝑇𝑇𝑝𝑝 represent the ordered set of TMC segments that form the route between the primary 
and secondary crash in pair 𝑝𝑝. For each segment 𝑡𝑡𝑡𝑡𝑡𝑡 ∈ 𝑇𝑇𝑇𝑇𝑇𝑇𝑝𝑝 , two types of speed data were 
extracted at 5-minute intervals from the start time of the primary crash to the start time of the 
secondary crash:  

• 𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 : the observed speed on segment 𝑡𝑡𝑡𝑡𝑡𝑡 during interval 𝑡𝑡 
• 𝐻𝐻𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 : the historical speed on the same segment during the same time interval 

In parallel, the total distance between the candidate primary and secondary crash locations was 
calculated as the sum of the lengths of the TMCs forming the route (𝑡𝑡𝑡𝑡𝑡𝑡 ∈ 𝑇𝑇𝑇𝑇𝑇𝑇𝑝𝑝), with 
adjustments for the offset positions of the crash locations within their respective segments. 

Speed Aggregation by Time Intervals 
For each time interval 𝑡𝑡, speeds were aggregated using the harmonic mean weighted by segment 
length: 

● Observed speed averaged across the route was calculated based on equation (2): 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡
𝑝𝑝 =

∑ 𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡
 
𝑡𝑡𝑡𝑡𝑡𝑡∈𝑇𝑇𝑇𝑇𝑇𝑇𝑝𝑝

∑ 𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡
𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡
𝑡𝑡

 
𝑡𝑡𝑡𝑡𝑡𝑡∈𝑇𝑇𝑇𝑇𝑇𝑇𝑝𝑝

    (2) 

● Historical speed averaged across the route was calculated based on equation (3): 

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡
𝑝𝑝 =

∑ 𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡
 
𝑡𝑡𝑡𝑡𝑡𝑡∈𝑇𝑇𝑇𝑇𝑇𝑇𝑝𝑝

∑ 𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡
𝐻𝐻𝑡𝑡𝑡𝑡𝑡𝑡
𝑡𝑡

 
𝑡𝑡𝑡𝑡𝑡𝑡∈𝑇𝑇𝑇𝑇𝑇𝑇𝑝𝑝

    (3) 

Where: 
• 𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 : the observed speed on segment 𝑡𝑡𝑡𝑡𝑡𝑡 during interval 𝑡𝑡 
• 𝐻𝐻𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 : the historical speed on the same segment during the same time interval 
• 𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡: the length of segment 𝑡𝑡𝑡𝑡𝑡𝑡 

Speed Reduction Metrics 
For each interval 𝑡𝑡 in pair 𝑝𝑝, the following metrics were computed: 
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• Speed change: 
• 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡

𝑝𝑝 =  𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡
𝑝𝑝 − 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡

𝑝𝑝 (4) 
• Speed change percentage: 
• 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡

𝑝𝑝 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡
𝑝𝑝

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡
𝑝𝑝 × 100  (5) 

Temporally Aggregated Results 
For each 𝑝𝑝 ∈ 𝑃𝑃 cross all intervals between the primary and secondary crashes in pair 𝑝𝑝, the 
following were calculated: 

• Overall average speed change: 
•  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝 = 1

𝑇𝑇𝑝𝑝
∑ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡

𝑝𝑝 
𝑡𝑡∈𝑇𝑇𝑝𝑝    (6) 

• Overall average speed change percentage: 
• 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑝𝑝 = 1

𝑇𝑇𝑝𝑝
∑ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡

𝑝𝑝 
𝑡𝑡∈𝑇𝑇𝑝𝑝  (7) 

• Speed change and speed change percentage for the specific time interval during which 
the secondary crash occurred, denoted as: 

•  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡
𝑝𝑝  and 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑡𝑡𝑡𝑡

𝑝𝑝  

Where: 

• 𝑇𝑇𝑝𝑝 is the number of 5-minute time intervals between the primary and secondary crash 𝑝𝑝 
start times. 

• 𝑡𝑡𝑡𝑡 is the time interval when the start time of the secondary crash. 

 
Once the relevant speed metrics for the route between each candidate primary-secondary crash 
pair were calculated, these values were used to further filter the set 𝑃𝑃. This filtering aimed to retain 
only those pairs in which the secondary crash was more likely to have occurred due to the traffic 
disruption caused by the primary crash. Specifically, candidate pairs that did not exhibit reductions 
in speed were excluded from modeling and descriptive analysis. 
The next part of this section presents summary statistics and distributions of the candidate 
primary-secondary crash pairs across the four states analyzed in this study. 

Identification Results 
Table 4 summarizes the candidate primary-secondary crash pairs identified through the hybrid 
filtering framework described earlier. For each state in the study, the table includes: 

• The number of candidate primary crashes that were associated with at least one potential 
secondary crash on their potentially impacted segments (𝐶𝐶𝐶𝐶𝐶𝐶3) 

• The number of candidate pairs that showed a speed drop along the route between the 
primary and secondary crash 

o 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝 < 0 and  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡
𝑝𝑝 < 0 

To further analyze the impact of incident timing, the counts of candidate pairs with observed speed 
drops are reported separately for two categories: 

• Pairs where the secondary crash occurred during the clearance time of the primary crash 
• Pairs where the secondary crash occurred after the primary crash had ended, but within 

a window equal to 50 percent of the primary crash duration (referred to as the recovery 
time in this study). 



DATA COLLECTION:  JUNE 2021 
REPORT DATE: NOVEMBER 2021 

 

  

Investigation of Factors Contributing to Secondary Crashes  23  
   

Table 4. Summary of Candidate Primary-Secondary Crash Pairs and Speed Drop Conditions 
State Candidate Pairs  

Count 
Pairs with Speed Drop  
(During Clearance Time) 

Pairs with Speed Drop  
(During Recovery Time) 

Maryland 28,572 8,093 (28.32%) 4,276 (14.97%) 

Virginia 52,310 12,968 (24.79%) 6,889 (13.17%) 

Tennessee 98,958 20,605 (20.82%) 8,882 (8.98%) 

Florida 637,362 80,848 (12.68%) 23,053 (3.62%) 

 
Figure 2 presents the distribution of speed changes to better illustrate how traffic conditions 
changed for the candidate pairs that experienced a speed drop. It shows both the average speed 
reduction over the duration between crashes and the speed reduction during the secondary crash. 
These distributions are shown separately for pairs that occurred during the clearance time and 
those that occurred during the recovery time. 
According to Figure 2, the distribution of speed drop—both in terms of overall average and at the 
specific time of the secondary crash—is consistent across all four states. In all cases, speed 
reductions ranged from 0 to nearly 100 percent. One notable pattern is that the speed drop at the 
time of the secondary crash is generally higher than the average speed drop over the full interval 
between the primary and secondary events. For example, among candidate pairs occurring during 
the clearance time of the primary crash, approximately 20 percent experienced an average speed 
drop of more than 40 percent. In contrast, around 30 percent experienced a speed drop greater 
than 40 percent, specifically at the time of the secondary crash. 
Another important takeaway from this figure is that the choice of a speed drop threshold for 
filtering candidate pairs directly impacts the number of pairs that remain classified as valid 
primary-secondary crashes. The higher the threshold, the more confident we can be that the 
secondary crash was indeed influenced by congestion caused by the primary incident. In 
particular, for pairs in which the secondary crash occurred during the recovery time, it is 
reasonable to expect that a more substantial traffic impact would be required for a causal 
connection to exist. Therefore, applying a stricter speed drop threshold to these cases is justified 
and may help improve the accuracy of secondary crash identification. 
 
In this study, all candidate pairs in which the secondary crash occurred during the clearance time 
of the primary crash were considered valid if there was any measurable speed drop along the 
route, applying a threshold of 0 percent. For pairs where the secondary crash occurred after the 
primary crash had ended—referred to as recovery time—a more conservative threshold of 10 
percent speed reduction was applied to ensure a stronger indication of congestion impact. 
For candidate pairs where the secondary crash occurred downstream of the primary crash, no 
threshold on speed drop was applied. Instead, an alternative filter was used to exclude pairs in 
which the secondary crash occurred more than 0.5 miles downstream of the primary location. 
This filter accounts for the fact that downstream secondaries are typically caused by 
rubbernecking or driver distraction, effects that are unlikely to persist beyond approximately one 
minute of travel time—roughly equivalent to 0.5 miles at a speed of 30 miles per hour. 
As noted previously, the reported geolocation of incidents is prone to error, with many crashes 
recorded at identical or repeated coordinates. To account for this uncertainty and take a 
conservative approach, the same speed drop thresholds applied to upstream secondary crashes 
were also applied to those reported at the same location as the primary crash. 
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Figure 2. Distribution of Speed Reductions for Candidate Primary-Secondary Crash Pairs by State 
and Timing Window 
 
Based on these criteria, Table 5 reports the percentage of unique primary incidents that led to at 
least one qualifying secondary crash, as well as the percentage of total crashes identified as valid 
secondaries, for each of the four states. 
Table 5. Summary of Candidate Primary-Secondary Crash Pairs and Speed Drop Conditions 

State Total Incidents Pct Primary Event Pct Secondary Event 

Maryland 214,008 3.86% 3.93% 

Virginia 397,964 2.81% 3.07% 

Tennessee 268,952 6.5% 7.5% 

Florida 1,849,575 4.14% 4.81% 

 
To explore the spatial and temporal relationships within the final set of selected primary-
secondary crash pairs, Figure 3 presents the distributions of the time difference between the start 
times of the primary and secondary crashes, and the distance between them, across all four 
states. According to this figure, all four states exhibit similar patterns in the distribution of spatial 
and temporal gaps between selected primary-secondary crash pairs, with Maryland showing 
relatively smaller gaps on average. In terms of spatial proximity, the share of secondary crashes 
occurring within 1 mile of the primary crash ranges from about 50 percent in Florida to around 70 
percent in Maryland. For temporal proximity, approximately 40 percent of secondary crashes in 
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Florida, Virginia, and Tennessee occurred within 30 minutes of the primary crash, compared to 
nearly 70 percent in Maryland. These results suggest that in Maryland, selected secondary 
crashes tend to occur more quickly and in closer proximity to the associated primary events. 
To further explore the joint relationship between spatial and temporal proximity of secondary 
crashes, Figure 4 presents a scatter plot of time difference versus distance between the primary 
and secondary crash for the final set of selected primary-secondary crash pairs across all states. 
Overall, there is a weak positive correlation, indicating that secondary crashes occurring later tend 
to happen farther from the primary crash location. This trend is consistent with the notion that 
secondary crashes are likely to occur within the congestion queue that builds and propagates 
upstream over time. The positive correlation is slightly stronger in Maryland, which may be 
attributed to the fact that the Maryland data is limited to the NHS—comprised of higher-volume 
roadways—where the impact of a primary crash on queue formation and growth is generally more 
pronounced. 
Two important considerations should be noted. First, although the initial radius search for 
candidate secondary crashes was limited to five miles based on Euclidean distance, the final 
matched pairs may reflect graph-based distances greater than five miles due to network routing 
and segment geometry. Second, while the distances reported in this study are accurately 
calculated using graph distance and adjusted for segment offsets, they may still be affected by 
inaccuracies in the reported geolocations of incidents. As discussed earlier, repeated or imprecise 
location reporting may introduce spatial uncertainty that should be considered when interpreting 
these values. 
To further inform the interpretation of secondary crash timing, Figure 5 presents a plot of primary 
incident duration versus the time difference between the start of the primary crash and the start 
of the associated secondary crash for the final set of matched primary-secondary crash pairs. 
This visualization helps investigate how far into the timeline of the primary crash the secondary 
crash tends to occur. A 45-degree reference line is included to distinguish between secondary 
crashes that occurred during the clearance time of the primary crash (points to the left of the line) 
and those that occurred during the recovery window—defined as up to 50 percent of the primary 
incident’s duration after its end time (points to the right of the line). 
According to Figure 5, in all four states, secondary crashes can occur at any time during the 
clearance period of the primary crash and even during the recovery period that follows. However, 
the density of observations—represented by the shading in the heat map—is higher closer to the 
start of the primary incident. This pattern is particularly evident for longer-duration incidents, 
where the shading visibly fades as time progresses. This suggests that while secondary crashes 
may occur throughout the clearance and recovery windows, they are more likely to occur closer 
to the start of the primary incident than toward its end or beyond. 
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Figure 3. Distribution of Temporal and Spatial Gaps Between Selected Primary-Secondary Crash 
Pairs by State 
 
 

 
Figure 4. Time Difference vs Distance of Primary-Secondary Pairs (with Trend & Correlation) 
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Figure 5. Duration of primary vs. Time Difference between Primary-Secondary Pairs (with 45-
degree reference line)  
 

 
Model Development 
This study employed logistic regression, one of the most widely used statistical models in crash 
prediction and, more specifically, in secondary crash analysis. As a parametric model, logistic 
regression is particularly well-suited for the inference objectives of this study. The primary goal is 
not only to predict the occurrence of secondary crashes but also to quantify the impact of key 
factors—such as incident duration, incident characteristics, roadway geometry, and 
environmental conditions—on the likelihood that a secondary crash occurs. 
Logistic regression is used to model a binary outcome—in this case, whether a secondary crash 
occurred (1) or did not occur (0). The model estimates the probability of the outcome as a function 
of a set of independent variables. It does so by modeling the log-odds of the outcome as a linear 
combination of the predictor variables: 

𝑙𝑙𝑙𝑙𝑙𝑙 � 𝑃𝑃(𝑌𝑌=1)
1−𝑃𝑃(𝑌𝑌=1)

�  = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋1 + 𝛽𝛽2𝑋𝑋2 + 𝛽𝛽3𝑋𝑋3 + ⋯+ 𝛽𝛽𝑘𝑘𝑋𝑋𝑘𝑘  (8) 

Where: 

• 𝑃𝑃(𝑌𝑌 = 1) is the probability of a secondary crash 
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• 𝑋𝑋1,𝑋𝑋2,𝑋𝑋3, … ,𝑋𝑋𝑘𝑘  are the predictor variables (e.g., duration of the primary incident, number 
of responders, weather condition, etc.) 

• 𝛽𝛽0 is the intercept and 𝛽𝛽1,𝛽𝛽2,𝛽𝛽3, … ,𝛽𝛽𝑘𝑘 are the model coefficients. 
The estimated coefficients can be exponentiated to yield odds ratios, which represent the 
multiplicative change in the odds of a secondary crash for a one-unit change in the corresponding 
predictor variable. This interpretability makes logistic regression especially useful for 
understanding the role of individual features in secondary crash occurrence, beyond their 
predictive power alone. 
Based on the data evaluation and processing steps described earlier, a comprehensive set of 
independent variables was developed for use in the logistic regression model. Table 6 presents 
all variables considered for inclusion in the logistic regression model. The table provides a short 
description for each variable, the source dataset (incident data, volume data, radar weather data, 
or segment data), and the percentage of records for which the variable was available in each of 
the four states. This availability assessment was used to guide variable selection and to ensure 
consistency in the modeling process across states. 
Please note that the availability percentages are based on the filtered incident datasets used for 
analysis, excluding records without valid geolocation or start/end time, as described in Table 2. If 
a variable is reported as NA for a given state, it indicates that the variable was either not available 
in the incident data provided to CATT Lab, had no variability (i.e., the same value for all 
observations), or was reported in a format unsuitable for modeling (such as free-text fields or 
categorical variables with too many unique values). 

Logistic Regression Assumptions 
An important step in developing a logistic regression model is verifying that the model 
assumptions are reasonably satisfied. The key assumptions include: (1) independence of 
observations, (2) a binary (or ordinal) dependent variable, (3) linearity of the independent 
variables with the log-odds of the outcome, and (4) absence of strong multicollinearity among the 
independent variables. In this study, the assumption of independence is considered to be met, as 
traffic incidents are treated as independent events. The dependent variable—whether a given 
incident results in a secondary crash—is binary by design, satisfying the second assumption. To 
evaluate the remaining assumptions, standard diagnostic tests were performed to assess 
multicollinearity and to examine the linearity of continuous variables with respect to the log-odds. 
These checks are described in detail in the following subsection. 
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Table 6. Independent Variables Considered for Modeling and Their Availability by State 
Variable Source Description Percent Available (%) 

MD VA TN FL 
Clearance 
Time 

Incident Data 
(Event) 

Duration between the start and 
end time reported for each incident  

100.00 100.00 100.00 100.00 

Day Type Incident Data 
(Event) 

Indicates whether the incident 
occurred on a weekday or during 
the weekend 

100.00 100.00 100.00 100.00 

Event Type Incident Data 
(Event) 

Type of incident, including values 
such as: disabled vehicle, serious 
accident, accident, incident, injury 
accident, medical emergency, 
vehicle on fire, multi-vehicle 
accident, disabled semi-trailer, 
abandoned vehicle, overturned 
vehicle, accident involving a 
pedestrian, jackknifed semi-trailer, 
brush fire, or none 

100.00 99.84 100.00 100.00 

Severity Incident Data 
(Event) 

Severity of the incident, 
categorized as: 'minor', 
'intermediate', or 'major'. 

NA NA 100.00 100.00 

Lighting Incident Data 
(Event) 

 NA NA 99.99 83.40 

Number of 
Responders 
Category 

Incident Data 
(Responders) 

Total number of responders, 
categorized as: 1, 2–3, or more 
than 3. 

90.30 43.34 90.78 87.58 

Emergency 
Vehicle 

Incident Data 
(Responders)  

Indicates whether an emergency 
vehicle was dispatched to the 
scene or not. 

NA 84.95 90.79 NA 

Total 
Vehicles 

Incident Data 
(Vehicle) 

Total vehicles involved, 
categorized as: 1, 2–3, or more 
than 3 

24.57 NA NA 17.45 

Truck 
Involvement 

Incident Data 
(Vehicle) 

Whether an incident involved a 
truck or not  

24.57 NA NA 17.45 

Shoulder 
Lane 

Incident Data 
(Lane) 

Indicating whether a shoulder lane 
was present at the incident 
location and whether it was 
closed. 

37.14 99.98 99.93 64.22 

Capacity 
Reduction 

Incident Data 
(Lane) 

Calculated as the average lane 
closure time divided by the total 
lane time, and categorized as: 0%, 
0–10%, 10–20%, 20–30%, 30–
50%, and >50%. 

37.14 99.98 99.93 64.22 

Traffic Flow Volume and 
Segment 
Data 

Average expected hourly vehicle 
count per lane at the incident 
location during the clearance 
period, categorized as: '0–500', 
'500–1000', '1000–2000', and 
'>2000'. 

99.01 98.04 99.79 87.51 

Road 
Curvature 

Segment 
Data 

Road curvature, categorized as: 
'Straight' or 'Curved'. 

99.89 99.90 99.91 99.93 

Functional 
Class 

Segment 
Data 

Functional road classification, a 
system used to group roads based 
on their intended service, with 

99.89 99.90 99.91 99.93 
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Variable Source Description Percent Available (%) 
MD VA TN FL 

class 1 being the highest and 5 
being the lowest. 

Weather 
Status 

Radar 
Weather Data 

Indicates whether there was rain 
or snow during the incident 
clearance period. 

100.00 100.00 100.00 100.00 

 
Multicollinearity 
Logistic regression requires little or no multicollinearity among the independent variables. This 
means that independent variables should not be highly correlated with each other. Detecting 
multicollinearity is important because while multicollinearity does not reduce the model's 
explanatory power, it does reduce the independent variables' statistical significance. The 
assumption can be verified with the variance inflation factor (VIF), which determines the 
correlation strength between the independent variables in a regression model. Cramér’s V is 
another measure for verifying this assumption for categorical variables. 

 
 
Variance Inflation Factor (VIF) 
VIF is a measure of the amount of multicollinearity in regression analysis. A large VIF on an 
independent variable indicates a highly collinear relationship to the other variables that should be 
considered or adjusted for in the structure of the model and selection of independent variables. 
The formula for VIF is:  

𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖 = 1
1−𝑅𝑅𝑖𝑖

2      (9) 

Where 𝑅𝑅𝑖𝑖2 is the unadjusted coefficient of determination for regressing the independent variable 𝑖𝑖 
on the other variables. 

When 𝑅𝑅𝑖𝑖2 is equal to 0, and therefore, when VIF or tolerance is equal to 1, the independent variable 
𝑖𝑖 is not correlated to the other variables, meaning that multicollinearity does not exist. In general:  

• VIF equal to 1 = variables are not correlated. 
• VIF between 1 and 5 = variables are moderately correlated. 
• VIF greater than 5 = variables are highly correlated. 

Cramér’s V 
Cramér’s V correlation is used to measure the association between two categorical variables, and 
its value varies from 0 (stating no relationship between the variables) to 1 (stating complete 
association between the variables). It reaches a value of 1 only when an attribute is completely 
determined by the other attribute. Cramér’s V is a normalized measure of association between 
two categorical variables derived from the Chi-square statistic, but unlike Chi-square, Cramér’s V 
gives a standardized measure of strength. The formula for Cramér’s V is: 

𝑉𝑉 = �
𝜘𝜘2
𝑛𝑛

𝑚𝑚𝑚𝑚𝑚𝑚 (𝑘𝑘−1,𝑟𝑟−1)
     (10) 

Where 𝜘𝜘2 is derived from Pearson’s chi-square test, 𝑛𝑛 is the total number of observations 𝑘𝑘 and 
𝑟𝑟 are the number of categories of the two categorical variables. 

Perfect Separation 
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Perfect separation in logistic regression occurs when one or more independent variables can 
perfectly distinguish between the outcome classes. This means the dependent variable can be 
completely predicted based on certain values of the independent variables. In such cases, the 
maximum likelihood estimation used to fit the model fails, as the estimated coefficients tend 
toward infinity to achieve perfect classification. This results in convergence issues, extremely 
large or undefined standard errors, and unreliable model outputs. To resolve this issue, the 
problematic variable was removed.  
Once multicollinearity and separation checks were completed for all candidate variables, a final 
set of independent variables was selected for modeling in each state. The variable selection 
process ensured that the included predictors met logistic regression assumptions and retained 
sufficient variability and interpretability. Table 7 presents the list of variables that qualified for use 
in the logistic regression models for each state, based on data availability, statistical checks, and 
relevance to the modeling objectives. 
Table 7. Final Set of Independent Variables Used in Logistic Regression Modeling by State 

Variable MD VA TN FL 

Clearance Time ✓ ✓ ✓ ✓ 

Day Type ✓ ✓ ✓ ✓ 

Event Type ✓ ✓ ✓ ✓ 

Severity x x ✓ ✓ 

Lighting x x ✓ ✓ 

Number of Responders Category x x x x 

Emergency Vehicle x ✓ ✓ x 

Total Vehicles x x x x 

Truck Involvement x x x x 

Shoulder Lane x x x x 

Capacity Reduction ✓ ✓ ✓ ✓ 

Traffic Flow ✓ ✓ ✓ ✓ 

Road Curvature ✓ ✓ ✓ ✓ 

Functional Class x x x x 

Weather Status ✓ ✓ ✓ ✓ 

 
Linearity of Continuous Variables with Log-Odds 
A key assumption in logistic regression is that continuous independent variables exhibit a linear 
relationship with the log-odds of the outcome. In this study, most independent variables were 
modeled as categorical variables—either by nature (e.g., weather condition, day of week) or by 
discretization for interpretability and consistency across states. Therefore, this assumption does 
not apply to those variables. 
The only continuous variable retained in its original form was clearance time, which is also a 
central variable of interest in this study. One of the main research objectives is to assess the 
marginal effect of unit increases in clearance time on the likelihood of a secondary crash. As such, 
verifying the linearity of clearance time with the log-odds of the response is necessary. 
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To assess this, the Box-Tidwell test was applied. This test evaluates whether the logit 
transformation of the outcome variable is linearly related to the continuous predictor variable. 
Specifically, the method augments the logistic regression model with an interaction term between 
the continuous variable and its natural logarithm. For clearance time (𝑥𝑥), the model includes an 
additional term 𝑥𝑥 × 𝑙𝑙𝑙𝑙𝑙𝑙 (𝑥𝑥) and the significance of this term is tested: 

𝑙𝑙𝑙𝑙𝑙𝑙  � 𝑝𝑝
1−𝑝𝑝
�  = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥 + 𝛽𝛽2(𝑥𝑥.𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙 (𝑥𝑥) ) + ⋯    (11) 

If the interaction term is statistically significant, this suggests a deviation from linearity. The test 
was conducted after fitting an initial logistic regression model using the final set of variables 
selected for each state. 
The results of the Box-Tidwell test indicated that clearance time does not exhibit a linear 
relationship with the log-odds of a secondary crash. Given that clearance time is a key variable in 
this study, and the objective is to retain it as a continuous predictor, several transformations were 
explored to address this nonlinearity. Logarithmic and quadratic transformations of clearance time 
were tested, but did not resolve the nonlinearity issue across all states. 
As an alternative, a piecewise modeling approach was adopted. Clearance time was segmented 
into intervals in which the variable demonstrated an approximately linear relationship with the log-
odds of the outcome. Note that the objective of this study was based on inference and utilized 
historical data. Thus, the duration is known. The following clearance time bins (in minutes) were 
identified as effective across all four states based on Box-Tidwell diagnostics: 
(0–10), (10–30), (30–60), (60–120), (120–300), and (300–600) minutes. 
Using this approach, separate logistic regression models were fitted for each clearance time bin 
within each state. These models were used to estimate the odds ratio of clearance time within 
intervals where the linearity assumption holds. Additionally, a baseline logistic regression model 
was fitted for each state using the full set of observations and all independent 
variables except clearance time. This allowed for estimation of the overall odds ratios associated 
with other predictors while avoiding the influence of the clearance time’s nonlinearity on the model 
structure. 
 

Modeling Results 
This subsection presents the key outputs from the logistic regression modeling phase. As 
described earlier, separate models were developed for each clearance time bin due to the non-
linear relationship between clearance time and the log-odds of a secondary crash. Table 8 
summarizes the odds ratios for clearance time within each defined bin, reported for each state. 
Alongside the odds ratios, the table includes the number of observations in each bin and the 
percentage of incidents that resulted in a secondary crash, called primary (i.e., where the 
dependent variable 𝑌𝑌 = 1). 

Across all models, a statistical significance threshold of 𝑝𝑝𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 < 0.05 was applied. In the results 
tables, any variable whose coefficient did not meet this significance criterion is labeled 
as SNS (Statistically Non-Significant). This labeling highlights variables whose impact on 
secondary crash likelihood was not statistically distinguishable from zero at the 95% confidence 
level. 
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Table 8. Odds Ratios for Clearance Time by Duration Bins and State 

Duration Bin (minutes) MD VA TN FL 

0-10 
minutes 

# Observations 96,931 108,794 72,931 370,185 

% Primary 1.61 0.46 1.48 0.82 

Odds Ratio 1.131 1.213 1.139 1.129 

10-30 # Observations 56,129 112,017 58,908 408,159 

% Primary 4.16 1.81 3.65 1.98 

Odds Ratio 1.031 1.035 1.031 1.033 

30-60 # Observations 33,020 88,018 41,552. 334,363 

% Primary 6.06 3.69 7.39 3.67 

Odds Ratio 1.014 1.016 1.013 1.016 

60-120 # Observations 17,782 65,074 40,757 322,009 

% Primary 8.78 6.98 10.99 6.33 

Odds Ratio 1.008 1.013 1.007 1.009 

120-300 # Observations 7,363 20,644 37,956 292,663 

% Primary 7.96 9.89 15.36 7.94 

Odds Ratio 1.003 1.002 1.003 1.003 

300-600 # Observations 2,439 2,807 16,458 120,106 

% Primary 7.35 12.54 21.16 7.86 

Odds Ratio SNS SNS 1.001 1.001 

 
According to Table 8, the odds ratio reported for each clearance time bin and state reflects how 
the odds of an incident leading to a secondary crash change proportionally with each additional 
minute of clearance time. Across all four states, the odds ratios are consistently higher for 
incidents with shorter durations, indicating that each minute increase in clearance time for these 
incidents has a more substantial impact on the likelihood of a secondary crash—an intuitive and 
expected pattern. 
The odds ratios for incidents lasting 0–10 minutes are approximately 1.13 in Maryland, 
Tennessee, and Florida, and as high as 1.21 in Virginia. This means that each additional minute 
of clearance time increases the odds of a secondary crash by 13–21% for short-duration 
incidents. For incidents in the 10–30 minute bin, the odds ratio drops to around 1.03, indicating a 
3% increase in odds per minute. This effect diminishes further with longer durations: incidents 
lasting 30–60 minutes have odds ratios around 1.015 (1.5% increase), those lasting 60–120 
minutes show odds ratios of 1.007–1.013, and incidents in the 120–300 minute range have odds 
ratios close to 1.003. 
For very long incidents (over 300 minutes), the odds ratios are either statistically insignificant in 
Maryland and Virginia or extremely close to 1 (e.g., 1.001 in Tennessee and Florida), suggesting 
that clearance time has minimal influence on the likelihood of a secondary crash once the incident 
duration exceeds five hours. 
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In addition to the bin-specific models for clearance time, a separate logistic regression model was 
developed for each state using the full dataset, excluding clearance time, to evaluate the effect of 
all other explanatory variables. The goal of this model was to estimate the overall odds ratios for 
categorical and other non-continuous variables included in the analysis. As in Table 8, a 
significance threshold of 0.05 was applied, and odds ratios for variables that did not meet this 
threshold are labeled statistically non-significant (SNS). Variables that were either unavailable in 
the dataset or excluded due to multicollinearity are marked as NA. 
For each categorical variable included in the model, a reference category is identified and listed 
in the table. The odds ratios presented for the remaining categories are interpreted relative to this 
reference category. That is, an odds ratio greater than 1 indicates a higher likelihood of a 
secondary crash occurring relative to the reference category. In contrast, an odds ratio less than 
1 indicates a lower likelihood. 
The results of this analysis are presented in Table 9. 
According to Table 9, several explanatory variables demonstrated consistent patterns across 
states, while others showed state-specific variations in their association with the likelihood of a 
secondary crash. 
Severity, which was only available in Tennessee and Florida, did not yield a statistically significant 
odds ratio in Florida. However, in Tennessee, both intermediate and major severity incidents were 
associated with odds ratios around 1.5, suggesting that more severe incidents increase the odds 
of a secondary crash by approximately 50% compared to minor severity crashes. This is 
expected, as severe crashes often take longer to clear and cause more disruption and distraction. 
Capacity reduction variables showed mixed results. In Maryland and Tennessee, the 20–30% 
reduction category had the highest odds ratio (close to 2), implying that such reductions may 
double the odds of a secondary crash compared to cases with no reduction. In contrast, Virginia 
and Florida showed the highest odds ratios for the 0–10% reduction range. This may reflect 
differences in countermeasure deployment (e.g., dynamic message signs) or inaccuracies in lane 
data entry during incident response. 
For the weekday variable, Virginia showed no significant difference between weekday and 
weekend crashes. Maryland had an odds ratio below 1, suggesting higher secondary crash odds 
on weekends, while Tennessee and Florida had odds ratios above 1 (1.07–1.17), indicating a 
slightly greater odds on weekdays. 
The presence of emergency vehicles (available in VA and TN) also showed opposite trends: an 
increased odds of secondary crashes in Virginia and a decreased odds in Tennessee. These 
differences could reflect variation in response strategies, traffic control practices, or data 
reporting. 
The event subtype categories showed several notable patterns: 

• "Abandoned vehicle" had an odds ratio below 1 in Florida (0.8), indicating a lower odds of 
secondary crashes compared to the reference group. 

• "Disabled vehicle" had an odds ratio below 1 across all states, suggesting lower secondary 
crash risk. 

• "Serious accident" in Maryland showed a high odds ratio (2.24), meaning it more than 
doubled the odds of a secondary crash. 

• "Multi-vehicle accident" showed elevated odds (e.g., 1.63 in VA, 1.37 in TN). 
• "Medical emergency" and "overturned vehicle" also had higher odds ratios that were 

significant. 
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Table 9. Odds Ratios of Non-Continuous Explanatory Variables from Logistic Regression Models 
for Each State (Excluding Clearance Time). 

Variable MD VA TN FL 

const 0.033 0.015 0.029 0.033 

Severity, Reference Category: minor 

intermediate NA NA 1.562 SNS 

major NA NA 1.553 SNS 

unknown NA NA NA SNS 

Capacity Reduction, Reference Category: 0% 

0 to 10% 1.358 1.927 1.907 1.936 

10 to 20% 1.252 2.022 1.211 1.430 

20 to 30% 1.815 2.076 SNS 1.535 

30 to 50% 1.593 1.662 0.906 1.418 

More than 50% SNS 0.593 1.592 1.395 

unknown 0.678 SNS 0.450 0.860 

Day Type, Reference Category: Weekend 

weekday 0.853 SNS 1.067 1.169 

Emergency Vehicle Involvement, Reference Category: No 

yes NA 1.163 0.916 NA 

Incident Type, Reference Category: Accident 

abandoned vehicle NA NA 1.841 0.807 

accident involving a pedestrian NA NA 0.399 NA 

brush fire NA NA NA SNS 

disabled semi-trailer NA 0.807 NA NA 

disabled vehicle 0.786 0.505 0.846 0.467 

incident SNS SNS NA 0.385 

injury accident 1.241 NA NA NA 

jackknifed semi trailer NA NA SNS NA 

medical emergency 0.686 NA NA NA 

multi-vehicle accident NA 1.629 1.371 NA 

overturned vehicle NA NA 1.553 NA 

serious accident 2.242 NA NA NA 

vehicle on fire SNS SNS 1.210 SNS 

Hourly Flow, Reference Category: 0 to 500 veh/hr/ln 

500 to 1,000 veh/hr/ln 1.429 1.995 1.643 1.585 

1,000 to 2,000 veh/hr/ln 2.279 4.195 3.198 3.557 
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Variable MD VA TN FL 

More than 2,000 veh/hr/ln 2.458 5.988 3.151 5.276 

unknown 0.655 0.612 0.070 0.544 

Lighting, Reference Category: Daylight 

Dark (No Street Light) NA NA SNS NA 

Dark (Street Light) NA NA SNS NA 

Dawn NA NA SNS NA 

Dusk NA NA SNS NA 

unknown NA NA SNS NA 

Road Curvature, Reference Category: Straight 

curved SNS SNS 0.942 0.961 

Weather, Reference Category: Clear 

rain 1.934 2.510 2.409 2.364 

snow 5.552 4.237 3.710 2.020 

 
Hourly flow, which categorizes expected traffic volume at the incident time, showed strong and 
consistent effects across states, using the 0–500 veh/hr/ln group as the reference. Higher flow 
categories had substantially higher odds ratios—up to ~6 in Virginia and ~5.3 in Florida for 
the >2,000 veh/hr/ln category. This indicates that secondary crashes are far more likely in high-
volume traffic environments, likely due to reduced maneuverability and faster congestion buildup 
following a primary crash. The “unknown” volume category consistently showed odds ratios below 
1, possibly reflecting incomplete data or unmeasured low-volume roads. 
Lighting and road curvature were mostly not statistically significant, with odds ratios near 1 or 
labeled SNS (statistically not significant). However, weather conditions were among the most 
influential variables: compared to clear weather, rain was associated with odds ratios of ~2.0 to 
2.5 across all states. Snow showed the strongest effect, with odds ratios ranging from ~2.0 in FL 
to over 5.5 in MD—the highest of any variable in the model. 
These results underscore two critical findings: 

• Adverse weather, especially snow and rain, is the most potent predictor of secondary 
crashes among the evaluated variables. 

• High expected hourly traffic flow dramatically increases odds of a secondary crash, 
making it an essential contextual factor for real-time incident management and risk 
forecasting. 

It is important to note that the exact values of the odds ratios should be interpreted with caution. 
Several factors can influence the reliability of these estimates: 

• Data quality and completeness vary across states and variables. Some features may be 
underreported, inconsistently defined, or entirely unavailable in certain datasets, which 
can affect model accuracy. 

• Unmeasured factors—such as driver behavior, enforcement presence, or real-time traffic 
control—were not accounted for but may influence the likelihood of secondary crashes. 



DATA COLLECTION:  JUNE 2021 
REPORT DATE: NOVEMBER 2021 

 

  

Investigation of Factors Contributing to Secondary Crashes  37  
   

• Inaccuracy in incident geolocation is a significant limitation. Since road curvature was 
derived directly from the reported location of incidents, any spatial inaccuracy can 
introduce bias, particularly for geometry-related features. 

These caveats highlight the need to view the odds ratios as indicative of general trends rather 
than precise causal estimates and reinforce the importance of improving data quality, especially 
for geospatial attributes, in future modeling efforts. 

Recommendations for Data Collection 
A key challenge in this multi-state analysis was handling the inconsistencies between agency 
databases.  For example, the fusion of multiple data sources including traffic speeds, weather, 
volumes, and roadway geometry—was necessary. The accuracy of time and geolocation 
attributes can have an impact on the ability to correctly associate an incident with the correct road 
segments or nearby events, thus affecting the fidelity of both descriptive statistics and modeling 
outputs. 
Similarly, temporal data quality—such as start and end times of incidents, responder arrival and 
clearance times, or lane closure timestamps—is critical. These time features form the basis of 
actionable insights into response strategies and are integral for constructing incident timelines. 
Although this study could not validate these timestamps independently, their accuracy remains 
essential for drawing reliable statistics and informing incident management practices. 
Another important aspect of data collection is the usability of the recorded attributes. One common 
issue is the treatment of missing values. If a data element is unpopulated due to its perceived 
irrelevance (for example, no lane closures occurred), this should be explicitly coded (for example, 
“all lanes open”) rather than left blank. This distinction enables data users to differentiate between 
genuinely missing values and cases where the feature does not apply, thereby reducing ambiguity 
in data interpretation. 
Additionally, variables with excessive numbers of unique values (especially free-text fields or 
loosely defined categories) are often unsuitable for direct modeling and require substantial 
preprocessing. It is highly beneficial for such features to be standardized at the point of collection, 
using controlled vocabularies or predefined category lists to improve downstream usability. 
To improve both efficiency and accuracy, transportation agencies should consider integrating 
auxiliary data sources directly into the traffic management systems. For instance, data elements 
such as number of lanes, road curvature, functional classification, or real-time weather conditions 
can be auto-populated using existing databases (such as datasets already maintained by state 
DOTS, HERE maps, OpenStreetMap, or NOAA radar feeds). This reduces the burden on field 
personnel, improves consistency, and allows for real-time validation of reported information. 
Conclusion and Future Work 
The primary objective of this study was to evaluate the relationship between incident duration and 
the probability of a secondary crash. However, this research made the following additional 
tangential contributions: 

• Conducted an in-depth review of recent studies in secondary crashes, highlighting 
methods to identify secondary crashes and methods to model secondary crashes 

• Established procedures to fuse disparate data sources into a master database for safety 
analysis. 

• Developed a methodology to identify secondary crashes using real-world speed data. 
• Created and evaluated several secondary crash prediction models using rigorous 

statistical methods to test the assumptions of each model. These models were used to 
make inferences on the impact of key variables such as incident duration, weather, 
capacity reduction, and flow rates on the probability of secondary crashes.  
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• Documented challenges related to best practices in traffic management system crash data 
collection 

• Made recommendations on the critical variables to collect to support secondary crash 
inference modeling 

 
This project has laid the groundwork for the following proposed future work activities: 
 
• Operationalizing a real-time secondary crash prediction capability: This effort will leverage 

the data processing and fusion techniques developed in this project to build a system for 
predicting the probability of a secondary crash in real-time at the onset of an incident. 
Predictions would be updated in real-time as new information is entered into agency traffic 
management systems such as the arrival of an emergency responder, changing weather 
conditions, or the reopening of a lane. These prediction algorithms could provide traffic 
incident management decision makers with valuable insights on an incident’s impact soon 
after detection and throughout the incident management process. This information will 
enable proactive operational decisions which could improve safety and reduce delays, fuel 
consumption, emissions, and property destruction. 
 

• Operationalizing a real-time incident duration prediction model: Recognizing that incident 
duration is a critical factor in predicting secondary crashes, a model that could estimate 
incident duration at the onset of an incident may enhance the accuracy of a real-time crash 
prediction model. Predictions would be updated in real-time as new information is entered 
into agency traffic management systems 

 
• Operationalizing a real-time queue prediction model: Speeds and associated queues 

resulting from an incident define the spatial boundaries for searching for secondary crashes. 
In the proposed real-time application, the max queue length would be predicted at the onset 
of the incident and updated as new information about the incident is provided by the traffic 
management system, nearby traffic sensors, weather, and probe-based speed data. 
Understanding the expected max queue length can inform operational decisions, such as the 
use of dynamic message signs (DMS) to inform road users of the back of the queue, sudden 
slowdowns, and the need for possible detour routes or change in operational strategies.  
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